
Discussion/Conclusions
Present analyses rely on the assumption that the scoring of models generated using Alphafold2 is able to discriminate models containing different entities. Note that peptides are free to bind to any place on 
the protein surface. 
● For the GPCR deorphanization, varied receptors are confronted with a given peptide, and the results are rather satisfactory, consistently with the results in [2].
● For the GPCR peptide screening, different peptides are confronted with a given receptor. Here again, the results are encouraging.
● For the PEPscan candidate validation, the results are more ambiguous. In some cases, no pose of the peptide targets the protein-protein interface. Furthermore, all peptides tend to bind the same location on protein surface

(see Figure 3), which is possibly not the desired one.

Overall, the specificity of the protein-peptide modeling is at stake, and our results suggest that it is really poor.
● When peptides are confronted with the same protein, it is possible the scores lose effectiveness due to the smaller size of the peptides compared to their target protein.
● Ranking heterogeneity is possibly an indicator of the poor performance of the scoring.

Why such a difference between PEPscan candidate validation and GPCR peptide screening ? Different hypotheses under investigation are:
● All peptides confronted with GPCRs are naturally occurring peptides whereas PEPscan candidates might exhibit different properties and correspond to a class of peptides not learnt by AlphaFold2.
● PEPscan peptides that correspond to protein fragments could be more hydrophobic than natural peptides selected during evolution, and thus be more sticky. It is however surprizing that in some cases such peptides do not

target the protein-protein interface which should be more hydrophobic.

Overall our results suggest the need to develop peptide-protein specific scores to discriminate the true binders from the incorrect ones. Another challenge is that of protein-peptide binding specificity, but this 
supposes to go back to AlphaFold2 internal prediction scheme, especially to increase the diversity of the poses. 

Can large scale structural modeling be applied 
to peptide screening and deorphanization?

Shaima Hashema, Jérôme Leprinceb, Pierre Tufferya

aBFA, Université Paris Cite, CNRS UMR 8251, Inserm U1133, Paris, France
bUniversity Rouen Normandie, Inserm, NorDiC UMR 1239, F-76000 Rouen, France

Contact: pierre.tuffery@u-paris.fr

– Peptides are ubiquitous in all living organisms and associated with varied fundamental physiological and biochemical processes. They are also becoming valuable therapeutic candidates, especially to
modulate targeted protein-protein interactions.
– Thanks to the progress of techniques such as mass spectrometry, or large-scale genome analysis, more and more endogenous peptides are identified but frequently, their targets remain unknown. Their
identification is referred to as the peptide deorphanization problem (1 peptide, n targets). It has motivated efforts in the past years, either from the experimental [1] or theoretical side [2].
– Conversely, for peptide therapeutic development, the target is usually known and one wishes to identify the best peptide targeting it among a collection of candidates. This is referred to as the peptide
screening problem (1 target, n peptides).
– Recent advances in deep learning-based protein structure prediction [3,4] suggest it is possible to predict the effective interaction of protein (and peptides ?) thanks to their associated confidence scores,
which motivates the development for in silico protocols to address peptide screening and deorphanization (e.g. [2]).

Here, our objectives are:
1: assess Alphafold2 performance for peptide deorphanization and screening for known binders of G Protein Coupled Receptors (GPCRs).
2: assess Alphafold2 performance for the ranking of peptides identified in vitro using PEPscan.
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Results (1)
Peptide deorphanization

ipTM pDockQ pDockQ2 Comb

mean 24.8 55.2 17.6 16.0

median 5 3.5 2.0 2.5

top10 9 9 9 9

Main observations: 
● The true binders are in the best 10% for all cases but 2 (86%)
● The protocol ranks in the top10 the true receptor for 9 out of 14 cases

(64%), independently of the score.
● The pDockQ2 improves largely over the pDockQ

● The different scores rank poorly the same targets. For alphaMSH and
NeuropeptideS, the rank of the true receptor is of more than 40. For
Ghrelin and NeuromedinU, the scores vary the most, one of the score
only ranking the true target in the best 10%.

● Consequently, combining the rankings obtained using the ipTM and the
pDockQ2 (Comb) improves only marginally the performance.

Materials
– GPCR test set (GPCRts): It consists of 366 GPCR sequences corresponding to sequences extracted from the IUPHAR resource [5] on date of September 22nd, 2022.
– GPCR peptide binders (GPCRpb): a set of 14 peptides known as GPCR binders, where the GPCR belongs to the GPCR test set (see Table 1)
– PEPscan dataset: a collection of peptides identified in vitro using PEPscan, scanning 7 protein complexes of known structures, as in [6].

Methods
To evaluate if a peptide interacts with a protein, we generate 3D models using the Alphafold2 framework [3], and analyze the scores associated with the complexes. We 
assume that the best scores will make it possible to identify the best pairs of partners.

– Peptide-protein complex generation: We have used Colabfold [7] version 1.5, using multimer_v3 weights, enabling dropout, using 5 recycles and 5 seeds (resulting
in 25 models). For the PEPScan analyses, the number of seed was increased to 20 (100 models). Given the size of some sequences, calculation have been performed using 
A100 GPUs thanks to the RPBS platform [8].

– Peptide-protein complex scoring: For each model we have then extracted the alphafold’s ipTM (observed best score in [2]), the pDockQ and pDockQ2 scores.

– Deorphaning: For each peptide of the GPCRpb set, we have considered the models generated with each member of the GPCRts collection (25 x 366 = 9150 models),
and ranked them according to several confidence indexes (Alphafold2’ ipTM, pDockQ and pDockQ2 [9]). The Comb score corresponds to a combination of the rankings 
obtained using ipTM and pDockQ2, with the assumption that if both scores rank a GPCR well, then it is more likely to truly interact with a peptide. In practice, we average the 
ranks (between 1 and 366) obtained using the ipTM and pDockQ2, but cases for which at least one score ranks the GPCR at a position greater than a value (200 here) are 
considered as too unlikely to be a binder, and the GPCR is removed from the list.

– Screening: For each peptide of the GPCRpb set, we have considered the models generated with each of their true binders in the GPCRts collection (25 x 14 = 350
models), and ranked them as for the deorphaning experiment.

– PEPscan candidate validation: Assess the ranking of the candidate peptide at protein-protein interface among all candidates identified using PEPscan for the target
protein.

Name Sequence Target

alphaMSH SYSMEHFRWGKPV Q01727

angiotensin II FDPRHVIY* / DRVYIHPF 
(*: scramble)

P35351

apelin KFRRQRPRLSHKGPMPF Q9JHG3

bradykinin RPPGFSPFR P25023/
P97583

Cholecystokinin DYMGWMDF P30551

CRH SEEPPISLDLTFHLLREVLEMARA
EQLAQQAHSNRKLMEII

P47866

Galanin GWTLNSAGYLLGPHAIDNHRSFS
DKHGLT

O08726

Ghrelin GSSFLSPEHQKAQQRKESKKPP
AKLQPR

O08725

glucagon HSQGTFTSDYSKYLDSRRAQDF
VQWLMNT

P30082

NeuromedinB GNLWATGHFM P24053

NeuromedinU FFLFRPRN Q9JJI5

NeuropeptideS SFRNGVGSGV / 
SFRNGVGSGVKKTSFRRAKQ

P0C0L6

NeuropeptideW WYKHVASPRYHTVGRASGLLMG
LRRSPYLW

P48146

Oxytocin CYIQNCPLG P70536

Table 1: GPCR binders (GPCRpb), with their 
sequences and the Uniprot Id of their true 
receptor

Table 2: Mean, median ranks of the 
true binders. Top10: number of targets 
for which the true binder is ranked 10 
or less (over 366).

Name Rank Target

ipTM pDockQ2 Comb

alphaMSH 3 3 2 Q01727

angiotensin II 2 2 2 P35351

apelin 2 1 1 Q9JHG3

bradykinin 1 1 1 P25023

Cholecystokinin 1 1 1 P30551

CRH 1 1 1 P47866

Galanin 1 1 1 O08726

Ghrelin 12 4 9 O08725

glucagon 1 1 1 P30082

NeuromedinB 1 1 1 P24053

NeuromedinU 2 4 2 Q9JJI5

NeuropeptideS 4 8 5 P0C0L6

NeuropeptideW 2 1 1 P48146

Oxytocin 1 2 1 P70536

Main observations:
● The natural binders are ranked in the top 3 for all cases but 2.
● Ranking heterogeneity depending on the scores is observed for

the 2 poorly predicted targets.
● The pDockQ2 values are usually very low, suggesting pDockQ2

is irrelevant for peptides/protein interactions.
● The number of cases is however too limited to draw general

conclusions.

Motivation: PEPscan is an in vitro approach to identify candidate interfering 
peptides to modulate protein-protein interactions. In previous studies, we have 
shown that it returns a limited number of candidates among which some are 
located in the vicinity of protein-protein interface. Here, we assess if Alphafold2 
is able to discriminate the best interfering candidate among all the candidates.

Table 3: Rank of the true binder according to different scores (see methods)
Main observations:
● Scores best rank peptides at complex

interface in only 6 cases over 12 (50%)
● For 9 cases out of 12, the poses overlap

the experimental binding site.
● All peptides tend to bind to the same

position on protein, suggesting a very
poor specificity to identify the binding
interface.

PDB Name #ip Rank #if Name #ip Rank #if
ipTM pDQ2 ipTM pDQ2

1e96 NCF2 7 N/A N/A N/A Rac1 4 1 1 4

1ktz TGFβ3 12 12 12 9 TGFR2 8 1 1 0

1m27 SAP 4 3 3 0 FynSH3 4 2 1 0

1lfd RalGDS 2 2 1 2 Ras 8 3 3 2

2j0t MMP-1 5 3 4 3 TIMP1 2 1 1 2

3bx7 NGAL 8 2 2 6 CTLA-4 2 1 1 2

1eer EPO 1 N/A N/A N/A EPOR 8 4 3 8

Table 4: Rank of the peptide at interface according to different scores among 
candidate peptides identified using PEPscan. Lines present the results for the each 
partner of the 3D complex of the PDB entry. N/A: no peptide identified at the 
interface. #ip: number of peptides identified using PEPscan #if: number of peptides 
contacting the experimental interface over #ip

Figure 1: Distribution of ranks for different 
scores.

Figure 3: SAP/FynSH3. 
All peptides (cyan) target the same 
spot,  not at the experimental 
interface
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