

https://doi.org/10.17952/37EPS.2024.P2281 Impact of backbone N-amination on the stability of parallel *β*-sheets

<u>Syrah K. Starnes^a</u>, W. Seth Horne^b, Juan R. Del Valle^a*

^aDepartment of Chemistry & Biochemistry, University of Notre Dame • ^bDepartment of Chemistry, University of Pittsburgh

BACKGROUND and **OBJECTIVES**

Homotypic interactions between parallel β-strands are characteristic of amyloids that underlie several neurodegenerative diseases.^[1] Minimalist approaches to stabilize parallel sheet conformation can inform the design of β -strand mimics and selective ligands of pathological amyloids. Backbone amide substitution can be used to enforce specific peptide conformations without sacrificing side chain content. We previously demonstrated that backbone N-amination of linear peptides stabilizes antiparallel β-sheet folds through increased torsional strain, *cis* amide lone pair repulsion, and intraresidue hydrogen bonding.^[2] Here, we investigate the impact of backbone amide N-amination on parallel β -sheet stability in a peptide parallel hairpin model, as well as in a miniprotein that exhibits a $\beta \alpha \beta$ tertiary fold.

Study Objectives: (1) Determine the effect of α -hydrazino acid substitution on the folded population of a parallel β -hairpin model peptide^[3]; (2) Incorporate α -hydrazino acids into the β -strand region of DS119 analogues and assess their impact on thermal stability^[4]

1) A parallel β -hairpin (Pbh) model for investigating the impact of backbone amide substitution

RESULTS

5) Backbone N-amino and N-methyl peptides retain a parallel β-sheet CD signature

8) NMR-derived structures of wt Pbh reveal significant fraying at

peptide	sequence															yield %																			
	β -strand β -strand																																		
				1	5.041	unu					0	2	57	5	0	2	57	5	0	2	57	5						1							
wt DS120	Q	V	R	Т	Ι	A	V	G	G	Т	Ρ	Е	Ε	L	Κ	Κ	L	Κ	Ε	Ε	А	Κ	Κ	А	Ν	Ι	R	V	Т	F	W	G	D	7	
aAla6 DS120	Q	V	R	Т	Ia	aA	V	G	G	Т	Ρ	Ε	Ε	L	Κ	Κ	L	Κ	Ε	Ε	А	Κ	Κ	А	Ν	Ι	R	V	Т	F	W	G	D	5	
MeAla6 DS120	Q	V	R	Т	I	Mei	AV	G	G	Т	Ρ	Ε	Ε	L	Κ	Κ	L	Κ	Ε	Ε	А	Κ	Κ	А	Ν	Ι	R	V	Т	F	W	G	D	14	
aPhe30 DS120	Q	V	R	Т	Ι	A	V	G	G	Т	Ρ	Ε	Ε	L	Κ	Κ	L	Κ	Ε	Ε	А	Κ	Κ	А	Ν	Ι	R	V	Τa	ŧΕ	W	G	D	12	
MePhe30 DS120	Q	V	R	Т	Ι	A	V	G	G	Т	Ρ	Ε	Ε	\mathbf{L}	Κ	Κ	\mathbf{L}	Κ	Ε	Ε	А	Κ	Κ	А	Ν	Ι	R	V	TN	1e I	W	G	D	5	

CONCLUSIONS

We incorporated α -hydrazino acids into models of folded secondary and tertiary structure. In the parallel β -sheet hairpin model, N-amination was well tolerated at residues in the structured core, but not at the frayed N-terminus. N-Amination of Arg10 and Tyr12 resulted in a significant increases in folded population relative to unsubstituted and N-methylated analogues. In the DS119 miniprotein, N-amination at Trp6 and Phe30 preserved the $\beta\alpha\beta$ fold and had minimal effect on miniprotein stability. DS120, a DS119 analogue with a lower melting temperature, was stabilized upon N-amination of the Trp6 residue. As in the parallel β -hairpin model, α -hydrazino acids were better tolerated in the strand regions relative to N-methyl amino acids.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation (CHE2109008) and the Institute National on Aging (NIH R01AG074570). SKS was supported by a Notre Dame CBBI fellowship through the NIH (T32GM145773). We thank the ND Nuclear Magnetic Resonance and Mass Spectrometry Core Facilities for access to instrumentation.

REFERENCES

Staniforth, [1] Taylor and Front. Neurosci. 2022, 16, e878869; [2] Angera et al., Acc. Chem. Res. 2024, 57, 1287; [3] Fisk et al., J. Am. *Chem. Soc.* **2006**, *128*, 7148; [4] Liang et al., Angew. Chem. 2009, 48, 3301.

37th European & 14th International Peptide Symposium, Florence, Italy, August 25–29, 2024