https://doi.org/10.17952/37EPS.2024.P1256

Combinatorial solid phase peptide synthesis of peptides on glass slides and thermographic investigation on CO₂-binding affinity

Jessica Jung-Fittkau^{1,2}, Katharina Moro¹, Josef Diebold¹, Andrea Kruse², Hans-Peter Deigner^{1,3,4}, Magnus Schmidt¹

¹Organic and Bioorganic Chemistry Labs, Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany. ²Institute of Agricultural Technology, University of Hohenheim, Schloß Hohenheim 1, 70599 Stuttgart, Germany. ³EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany.

⁴Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.

Abstract:

In this research peptide arrays, synthesized with combinatorial solid-phase peptide synthesis (SPPS), have been used to detect CO_2 binding in an artificial CO_2 atmosphere by the technique of thermographic measurements using a high-resolution infrared thermographic camera. Thereby, endo- or exothermic reaction heat release can be detected in mk range indicating successful CO_2 binding to possible active peptides.

1 Introduction / Objectives

 Biocatalysts such as RubisCO play an important role in the conversion of CO₂ into organic molecules. Certain amino acids are crucial for CO₂ fixation in the binding site of carboxylases/oxygenases [1]. active peptide inactive peptide silicone mask sequence sequence

• To investigate this process, we performed a combinatorial peptide array synthesis of peptides on functionalized glass slides, followed by screening for CO_2 -binding-affinity of the peptide library with an infrared camera in a CO_2 containing environment (see Figure 1).

2 Methods												
Combinatorial solid- phase peptide synthesis		Thermographic mass screening of peptide sequences in a CO ₂		Identification of active peptide sequences by heat manning		Synthesis of the active sequence on resin		Analytical evaluation of the CO ₂ binding process		Complete chemical analysis of the sequence		

3 Results

- The temperature abnormality in the His-Phe-Asn sequence was reproducible.
- The temperature abnormality in the Phe-His-His sequence was not reproducible.

— Phe-Asn-His— His-Asn-PheAsn-Asn-His— His-Asn-Asn— Phe-Phe-His— His-Phe-Phe— Asn-Phe-His— His-Phe-Asn— Phe-His-His— His-His-Phe— Asn-His-His— His-His-Asn

Fig. 3: Example of a thermographic examination of a slide with tripeptides

4 Outlook

- We are currently in the process of transferring the synthesis of the potential HIT sequence to resin beads.
- Gaining higher amounts of peptides for the evaluation of the CO₂ binding process.
- Technical applications of the sequence are to be tested.

5 Literature

 [1] Stoffel, G. M. M., Saez, D. A., DeMirci, H., Vögeli, B., Rao, Y., Zarzycki, J., Yoshikuni, Y., Wakatsuki, S., Vöhringer-Martinez, E., & Erb, T. J. (2019). Four amino acids define the CO2 binding pocket of enoyl-CoA carboxylases/reductases. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 13964–13969. https://doi.org/10.1073/pnas.1901471116