



# **Computational/Experimental Symbiosis** in the Design of **Supramolecular Peptide Architectures**

Ivan R. Sasselli,<sup>1,2</sup> Laura Perez-Chirinos,<sup>2</sup> Aitziber L. Cortajarena,<sup>2,3</sup> & Zaida Alvarez.<sup>4</sup>



#### i.sasselli@csic.es

<sup>1</sup>Materials Physics Center (MPC-CFM), CSIC-UPV/EHU, San Sebastian, Spain. <sup>2</sup>CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. <sup>3</sup>Ikerbasque, Basque Foundation for Science, Bilbao, Spain. <sup>4</sup>Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.

https://doi.org/10.17952/37EPS.2024.P1307

### Supramolecular Peptide Assemblers (SPAs)

- □ Short peptides able to self-assemble into fibres<sup>1</sup>
- □ Form networks with excellent performance as artificial extracellular matrices (ECMs)<sup>2</sup>



## **Design & Understanding Challenges**

Experimental characterization from proteins 100 SPA 1 LD effect



Challenging interpretation



Lack of representative crystal structures to benchmark experimental and computational methods



### **Charge Density Effect in Bioactivity**

Assess the effect of charge density on bioactivity □ ALP Library of Charges -3 to -9/peptide



¬Neuronal differentiation from **Neuronal Progenitor Cells (NPCs)** 

**Charge Density** 

Fibres with strong intermolecular order

#### - ALP3 **β-sheet** - ALP6 – ALP7 - ALP9 1600 1650 1700 1750 **v** (cm<sup>-1</sup>)

**TUJ1= Neurons** 

3 6 7 9

100-

80

## **Protein-ALP Hybrid Assemblies**

- □ Tetratricopeptide Repeat (TPR) protein<sup>3</sup> + ALPs
- □ 1 vs 2 ALPs → Controls material dimensionality





## **Conclusions**

- □ <sup>n</sup>Pod:
- □ ALP libraries:
- new parameter to control intermolecular cohesion.
- key role of charge density in the bioactivity of SPAs.
- Hybrid assemblies: control dimensionality and nanoscale morphology.
- The Computational/Experimental Symbiosis is a powerful approach to design materials with novel features and understand their function.

#### References

- Sasselli, Syrgiannis. Eur. J. Org. Chem. 2020, 2020, 5305.
- 2. Alvarez, Kolberg-Edelbrock, Sasselli, Stupp et al. Science, 2021, 374, 848.
- 3. Cortajarena, Sasselli, et al. Acc. Chem. Res. 2021, 54, 3836.

#### Acknowledgements

- ¬ Ramon y Cajal (RYC2021-033294-I)
- □ Gipuzkoa Fellow (2019-FELL-000017-01)
- ¬ Maria de Maeztu Units of Excellence (MDM-2017-0720)