

Spatio-temporal control of cellular differentiation for cartilage tissue engineering

Jules SIMONIN GARCIA^{1,2}, Cécile ECHALIER¹, Emmanuel BELAMIE², Marie MORILLE², Gilles SUBRA¹ https://doi.org/10.17952/37EPS.2024.P1172 ¹Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France²Institut Charles Gerhardt de Montpellier, Univ. Montpellier, France³Institut Charles Gerhardt de Montpellier, CNRS, ENSCM, Montpellier, France³Institut Charles Gerhardt de Montpellier, Univ. Montpellier, France³Institut Charles Gerhardt de Montpellier, CNRS, ENSCM, Montpellier, France³Institut Charles Gerhardt de Montpellier, Univ. Montpellier, France³Institut Charles Gerhardt de Montpellier, CNRS, ENSCM, Montpellier, France³Institut Charles Gerhardt de Montpell

Programs available : 🚫 SELECTIVITY

- SitePrediction and PeptideCutter (cleavage site)
- PepSite (binding sites)
- DeepPeptide (AI) and PoPS (substrate specificity)

Computer Program and analysis optimizations

	n°	Sequences	n°	Sequences	n°	Sequences
	1	GPKG X MNPP	9	GPPG X MNPP	17	GPLG X MNPP
	2	GPKG X MNGP	10	GPPG x MNGP	18	GPLG <u>XMNG</u> P
	3	GPKG XMR PP	11	GPPG x MRPP	19	GPLG XMR PP
	4	GPKG XMRG P	12	GPPG XMRG P	20	GPLG XMRG P
	5	GPKG X LNPP	13	GPPG <u>x</u>LNP P	21	GPLG <mark>x</mark> LNPP
	6	GPKG XL NGP	14	GPPG XLNG P	22	GPLG XL NGP
	7	GPKG <u>x</u>LRP P	15	GPPG <u>x</u>LRP P	23	GPLG <u>x</u>LRP P
	8	GPKG _XLRG P	16	GPPG <u>X</u>LRG P	24	GPLG <mark>xLRG</mark> P

24-peptide library

Target protease : MMP-13

Competing proteases : [MMP-1, MMP-2, MMP-3, MMP-9, ADAMTS-4, ADAMTS-5]

"X ": sequence cleavage bond

An aromatic area was found near the cleavage site, with matching distances

(N-ter--cleavage bond and Zn--aromatic area). All further studies were made

with Fmoc N-ter peptides (FIPs) to allow peptides to interact with MMP-13.

Our program : SELECTIVITY EFFICIENCY

- based on the **score of amino acids**, per position and per enzyme (MEROPS), gives :
- the most selective sequence of the target protease
- the sequence library from the most selective to the most efficient
- the most efficient protease of the target sequence

MMP-13 modelization A : Enzyme with peptide in the catalytic pocket B : Catalytic site zoom - : 15 A - : 14,5 A

C : Selectivity

at a fixed [MMP-13]

P2' position : **Arg** lowers more K_M than **Asn**

calculated with UPLC

Selective and efficient methodology to screen protease-sensitive peptides :

Program predicting the **sequence library** to screen

New screening method that is faster, cheaper and accurate to rank peptides

Usable for various projects, depending on the specifications

Conclusion and perspectives

Comparison of the specificity and selectivity

Use of **IP22** for the main project (the most selective one, with good efficiency) :

- click chemistry to the carrier;
- thiol-Michael addition to the siRNA lipoplexe.

Proof of method robustness on other enzymes complexes. Research on the theorical connection between Δ_s and k_{cap} .

Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. *The Lancet* **2020**, 396 (10258), 1204–1222.

Scotti, C. *et al.*, Recapitulation of Endochondral Bone Formation Using Human Adult Mesenchymal Stem Cells as a Paradigm for Developmental Engineering. *Proceedings of the National Academy of Sciences* **2010**, 107 (16), 7251–7256.

Mathieu, M. et al., Induction of Mesenchymal Stem Cell Differentiation and Cartilage Formation by Cross-Linker-Free Collagen Microspheres. *Eur Cell Mater* **2014**, 28, 82–96; discussion 96-97.

Stay tuned for the publication

jules.simonin-garcia@umontpellier.fr Tel : (+33)6 87 24 46 74

Pôle Chimie Balard Recherche IBMM - UMR 5247 // ICGM - UMR 5253 1919, route de Mende 34293 MONTPELLIER cedex 5

