https://doi.org/10.17952/37EPS.2024.P2042

Design and Synthesis of Peptide Modulators of Gαi/s Proteins Anna Pepanian¹, <u>Sabriye Aydoğdu</u>¹, F. Ayberk Binbay¹, Pradipta Ghosh², Dehua Pei³, and Diana Imhof¹

¹Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany, ²Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, USA, ³Department of Chemistry and Biochemistry, The Ohio State University, Columbus, USA.

Introduction

The stimulation of G protein-coupled receptors (GPCRs) by ligand binding initiates the shuttle of heterotrimeric G proteins (G $\alpha\beta\gamma$) between the active (G α -GTP) and inactive (G α -GDP) state¹. Subsequently, the active G α -GTP subunit and the G $\beta\gamma$ dimer interact with downstream effectors that trigger several intracellular pathways. These can provoke cellular alterations that account for severe diseases. Such cellular changes can be investigated through peptides targeting specifically the G α subunits²⁻³. For instance, the discovery of the macrocyclic depsipeptides YM-254890 and FR900359, inhibitors of the G α q subfamily, evoked curiosity in developing linear and cyclic peptides against other G α subunits. Interestingly, procedures such as the screening of **combinatorial peptide libraries** revealed the KB-752, GIV-Girdin, and GPM-1c/d (G protein modulator) peptides, which exhibit novel GEM (guanine nucleotide exchange modulator)-like activities by inhibiting G α i and activating the G α s signaling cascades³⁻⁹.

Workflow

UNIVERSITAT

Figure 1. The methodology includes (1) peptide library screening, (2) synthesis, (3) binding analysis, (4) cellular activity assays, and (5) computational modeling and docking studies. Created with BioRender.com.

Results

- We previously identified a linear nonapeptide, GPM-1, from the screening of a one-bead-one-compound (OBOC) library against Gαi-GDP³⁻⁵, which revealed high binding affinities to Gαi and Gαs, resulting in a bifunctional GEM-like activity. Chemical modifications of the GPM-1 lead compound, such as cyclization and conjugation with a cell-penetrating peptide (series GPM-1b/c/d), resulted in modulators with enhanced proteolytic stability and cell permeability.
- Second, an advanced one-bead-two-compound (OBTC) library was screened towards both activity states of the Gαi protein and revealed bicyclic peptides containing non-proteinogenic and D-amino acids (GPM-2, GPM-3, peptide 10, (*Fig. 2a-c*)). Cellular studies showed that the GPM-2/3 compounds bind to novel sites on the protein surface influencing thereby their biological properties (GPM-2 as GEF-like and GPM-3 as a GAP-like modulator of the Gαi signaling (*Fig. 2d*)).

• In silico studies of the peptides GPM-2, GPM-3, and peptide 10 defined the structural similarities and differences between them (Fig. 3a, b). Protein-ligand docking studies also revealed similarities in the binding site between peptide 10 and GPM-3, which were found to interact between the α-helical and switch III region (SWIII) (Fig. 3a).

- Despite the binding site similarity, the K_D value (9.077 μ M) was higher for peptide 10 compared to GPM-2 (5.0 μ M) and GPM-3 (0.7 μ M) (*Fig. 2d*). The reduced binding affinity may be a result of the positioning of the high numbers of hydrogen bond donor and acceptor residues (Lys, Thr, Tyr, Dap).
- Additionally, the interaction of both rings of peptide 10 with the protein might introduce unfavorable interactions, contributing to the overall weaker binding affinity.

Figure 3. Computational superimposition of peptides on the Gail protein (a) Comparison of interaction sites of the peptides GPM-3 (yellow) and peptide 10 (cyan) on Gail-GTP γ S (PDB: IGIA⁹) (gray). (b) The superimposed position of GPM-2 on Gail-GDP³ (gray). Nucleotides are shown in magenta.

Summary & Outlook

Our studies with different combinatorial peptide libraries revealed novel Gai/s modulators with distinct guanine nucleotide exchange activities. Compounds GPM-2, GPM-3, and peptide 10 were identified from an OBTC peptide library with promising selectivity for Gai. *In silico* studies unveiled new important structural features for Gai binding, which were confirmed by comparison of peptide 10 to the Gai modulators GPM-2 and GPM-3. These findings provide fundamental knowledge for deeper investigations of peptide 10, and optimization of the biological properties of the obtained compounds to achieve higher pharmacological potencies.

References	Acknowledgment		Check Imhof Lab
 Campbell et al. Nat. Rev. Drug Discov., (2018), 17(11), 789-803 Johnston et al. FEBS Letters, (2005), 579(25), 5756-5750 Nubbemeyer et al. ACS Chem. Biol., (2022), 17(2), 463–473 Pepanian et al. J. Med. Chem., (2023), 66(17), 12396-12406 Lian et al. JACS, (2014), 136(28), 9830-9833 Coleman et al. Science (1994), 265, 1405-1412 	DFG Deutsche Forschungsgemeinschaft heinrichhertzstiftung	DAAD Deutscher Akademischer Austauschdienst German Academic Exchange Service	Publications