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Fig. 1. The models are based on heterogeneous data obtained by applying sliding windows of varying lengths: 
from single amino acids to di- and tripeptides. Three models were trained on peptides with experimentally 
validated SA status. Data pre-processing based on t-SNE was performed for dimensionality reduction while 
padding shorter sequences to a maximum length of 24 residues was used to expedite training. The models were 
optimized and evaluated using the nested 5-fold cross-validation sampling technique before yielding the final 
model ready for exploitation. With the aim of discovering sequences with high self-assembly propensity, the 
hybrid AP-SP model was used as a guideline in a genetic algorithm-based generative approach.

1. Overview of the proposed research pipeline 2. Neural network data pre-processing and hyperparameter optimisation

Fig. 2. a The distribution of peptides lengths within the dataset. The sequences were labelled by their experimentally confirmed 
self-assembly status. b Schematic representation of the sliding window pre-processing procedure identifying individual amino 
acids, di- and tri- peptides within the sequence. c Structure of the input data for an example sequence NFGAIL and a hybrid AP-
SP RNN model. d Model construction workflow diagram. e Hyperparameter values selected by grid-search optimisation, along 
with the number of occurrences. ’Num cells’ represents the number of cells in a bidirectional LSTM layer, ’kernel size’ is the 
kernel size used in the convolutional layer, while ’dense’ presents the number of units in the final densely connected layer of the 
model. f Maximum accuracy, minimal loss, and average accuracy and loss during training, along with standard deviations.

4. Applicability of the proposed model: Self-assembly potential in
unexplored sequence space

Fig. 4. The peptides were generated using a genetic algorithm guided by the hybrid AP-SP model and validated 
using MD simulations. A plot depicting the similarities between the generated peptides and the sequences used 
for model training, along with the accompanying table containing five generated sequences with the highest 
probability of self-assembly for a hexapeptides and b peptides with lengths between five and ten residues. The
ability of the generated peptides to aggregate was validated using MD simulations where the initial (0 ns) and final 
(200 ns) frames of the simulation are shown for an example c hexapeptide (FMGIIF) and d decapeptide 
(FATAAGGNNF). e Comparison of amino acid distributions within the training dataset, generated sequences with 
six residues, and generated sequences with five to ten residues.

Fig. 3. Schematic representations of the architectures of the RNN models for a the AP model, b the SP model, and
c the hybrid AP-SP model. Histograms of the self-assembly prediction probability distribution on the aggregated test folds for d
the AP model, e the SP model, f the hybrid AP-SP model, g the SP model with t-SNE, and h the hybrid AP-SP model with t-SNE, 
for the experimentally confirmed SA peptides (blue) and NSA peptides (red).

3. Architectures and respective performance assessments

5. Consensus motifs

Fig. 5. Sequences from the final population of an example
generative run, aimed at investigating the convergence of the
generative approach. Only a single occurrence of each
peptide in the final population was retained to prevent
redundancy. Distinct motifs can be observed: a BLOSUM62
coloring, ClustalW multiple sequence alignment; b main motif
groups and c sequence logo showing the main consensus
motif obtained by an example generative run for
hexapeptides.
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