

Investigating protein prenylation using cellpermeable peptides

Martin Matijass^{*}, Merlin Klußmann^{*}, Annika Klimpel Ines Neundorf^{*}

*Institute of Biochemistry, University of Cologne, Germany

Abstract

Protein prenylation is an irreversible post-translational modification in which prenyltransferases attach an isoprenoid to a *C*-terminal CaaX-motif. This protein modification determines the localization and biological function of proteins. Targeting protein prenylation would be an exciting way to modulate their activity spectrum.

Recently, we developed cell-permeable CaaX-peptides that impaired Ras protein localization and their biological function as a molecular switch. The peptides combined a cell-penetrating peptide (CPP) with a *C*-terminal CaaX-motif of Ras proteins. They highly accumulated inside cells and exhibited pronounced toxicity to KRas mutated pancreatic cancer cells bearing a G12D mutation (PANC-1). Also, CaaX-peptides altered Ras localization causing a loss of membrane integrity and decreased KRas levels in PANC-1 cells. This likely affected other interactors as, for instance, the expression of the tumor suppressor and negative regulator of KRas, neurofibromin-1 (NF-1).

Based on these findings, my study aims to further investigate intracellular processing of CaaX-peptides and to study their influence on KRas expression and membrane localization, and how they affect distinct KRas interactors.

Design and Synthesis of cell-permeable CaaX-peptides

• Synthesis of CaaX-peptides derived

	1	10	11-160	17	0	180
Kras4B:	MTEKL	.VVVG		REIRKHKEKM	SKDGKKKK	KK <mark>SKTK CVIM</mark>
sC18*:				GL	RKRLRKFR	NK
CaaX-1:				GL	RKRLRKFR	NK SKTK CVIM

reloc

is funded by

DFG

Name	Sequence	Mwcalc [Da]	Mwexp [Da]	Purity [%]
CaaX-1	GLRKRLRKFRNK-SKTK-CVIM-OH	2463.1	2463.645	>98
SaaX-1	GLRKRLRKFRNK-SKTK-SVIM-OH	2447	2447.568	>98
CF-CaaX-1	CF-GLRKRLRKFRNK-SKTK-CVIM-OH	2821.4	2821.992	>98
CF-SaaX-1	CF-GLRKRLRKFRNK-SKTK-SVIM-OH	2805.3	2806.022	90
Bio-CaaX-1	Bio-GLRKRLRKFRNK-SKTK-CVIM-OH	2689.4	2690.035	85
Bio-SaaX-1	Bio-GLRKRLRKFRNK-SKTK-SVIM-OH	2673.3	2673.735	80

from Ras proteins conjugated to the CPP sC18*

→ recognition of CaaX-peptides by the prenylation machinery

→ interference with Ras prenylation and subsequent signaling processes

In cellulo detection of Bio-CaaX-1

- Peptide isolation using magnetic streptavidin beads
- In cellulo detection of Bio-CaaX-1 by mass spectrometry

CaaX-1 interacts with FTase

Influence of CaaX-1 on KRas membrane localization

0.2

CaaX-1

SaaX-1

3 h peptide treatment (30 μM)

- Immunostaining using KRas antibody conjugate
- → Decrease of KRas
 membrane localization
 after CaaX-1 treatment

- 24 h peptide treatment (30 μ M)
- Pulldown assay using magnetic streptavidin beads
- \rightarrow CaaX-1 interacts with FTase

CaaX-1 is farnesylated ex cellulo

3 h peptide treatment (30 μM)

- Membrane fractionation using Digitonin (cytosol) and Triton X-100 (membrane)
- →KRas only detectable in membrane fraction
- → Decreased KRas levels in membrane fraction after CaaX-1 treatment

- 18 h reaction time
- 250 nM rat FTase + 50 μM CaaX-1 (+ 50 μM FPP)
- \rightarrow CaaX-1 is farnesylated by FTase

CaaX-1 alters Ras regulators and downstream effectors

- 24 h peptide treatment (30 μM)
- → different expression levels of KRas and NF-1 potentially explain different activation of PI3K/AKT/mTOR signaling in PANC-1 and BxPC-3

CaaX-1 alters KRas abundance in PANC1

• 24 h peptide treatment (30 μM)

PANC-1: KRas G12D mutant pancreatic ductal adenocarcinoma **BxPC-3**: KRas wildtype pancreatic ductal adenocarcinoma

→Influence of CaaX-1 on KRas expression levels depending on Ras genotype

Outlook

- Investigating alterations of Ras signaling using a phosphoproteomic approach
- How do CaaX peptides influence nanoclustering of KRas?
- Does CaaX-1 influence the interactome of KRas genotypes?

Created with BioRender.com

[1] Wang, M. & Casey, P. J. Protein prenylation: Unique fats make their mark on biology. *Nature Reviews Molecular Cell Biology* vol. 17 110–122 (2016).

[2] Palsuledesai, C. C. & Distefano, M. D. Protein prenylation: Enzymes, therapeutics, and biotechnology applications. ACS Chemical Biology vol. 10 51–62 (2015).

[3] Klimpel, A., Stillger, K., Wiederstein, J. L., Krüger, M. & Neundorf, I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. *FEBS J.* febs.15612 (2020) doi:10.1111/febs.15612.