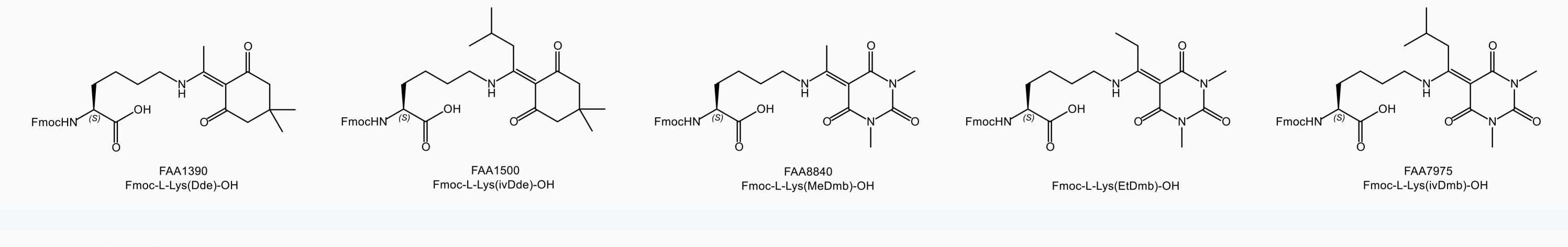
Novel Selectively Cleavable Dmb-Based Protecting Groups for Side Chain Amino Groups of Amino Acids **ECSYNTAN EXPENS DEPENS Dependent**

<u>Raimund Maier¹, Karin Rustler¹, Thomas Bruckdorfer¹, Udo Kalejs², Vilnis Liepins², Kai Holland-Nell³, Jacqueline Dalski³, Stephan Pritz³</u>

¹ Iris Biotech GmbH, Adalbert-Zoellner-Str. 1, 95615 Marktredwitz, Germany 2 Bapeks Ltd., Rupnicu 4, Nordic Industrial Park, Olaine, LV-2114, Latvia 3 Biosyntan Gesellschaft für bioorganische Synthese mbH, Robert-Roessle-Straße 10, 13125 Berlin, Germany https://doi.org/10.17952/37EPS.2024.P2008

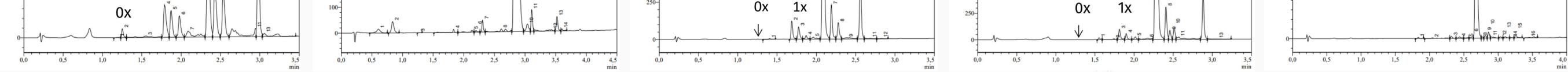

Abstract

We are presenting a **novel selectively cleavable protecting group** for the side-chain amino groups of lysine or other diamino acids, which play an important role during peptide synthesis, e.g., for modification of a particular side chain on the synthesis resin.

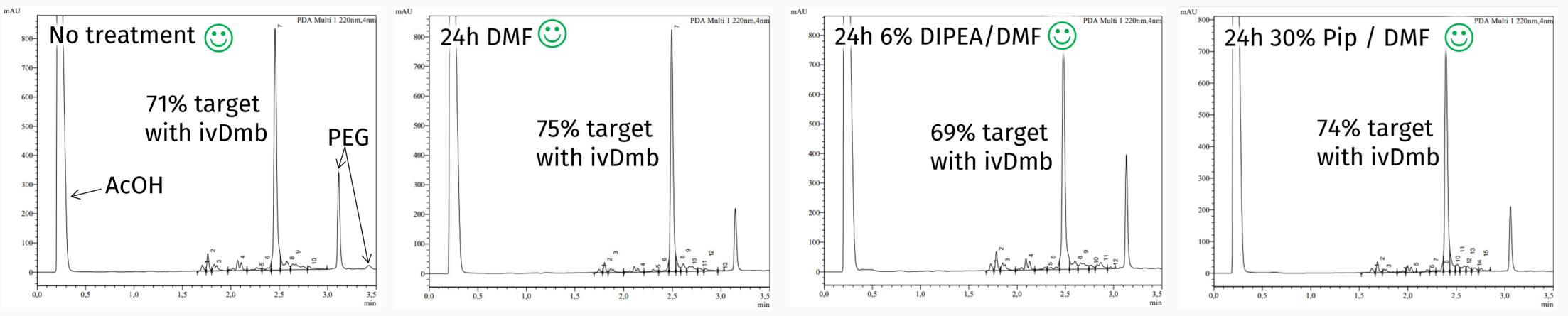
Trityl-based, mildly acidic cleavable protecting groups such as Mtt or Mmt are incompatible with strongly acid-labile resin linkers like trityl. Therefore, amino acid derivatives carrying the **hydrazinolysis-susceptible protecting group Dde or ivDde**^[A] are frequently used for the synthesis of branched, cyclic, or side chain-modified peptides. However, **Dde might migrate to free lysine epsilon-amino groups ("scramble")**^[B] and for the more robust **ivDde, total removal is hardly possible**.

A newer group for the orthogonal protection of amino groups is **MeDmb (methyl dimethylbarbituric acid)**.^[C]

In our study we present the possibilities and limitations of the novel lysine Dmb derivatives (MeDmb, EtDmb, ivDmb) and compare their properties with the existing protecting groups Dde and ivDde.

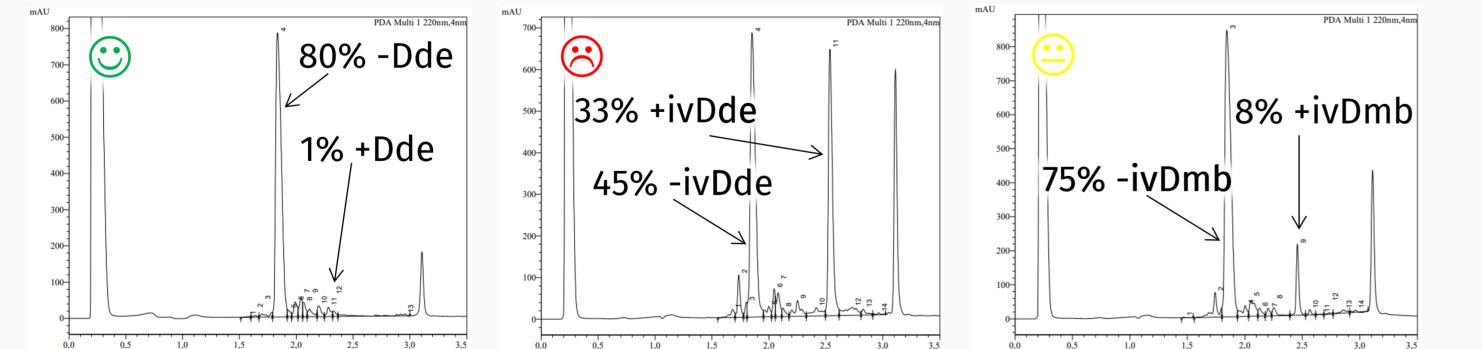

Results & Discussion

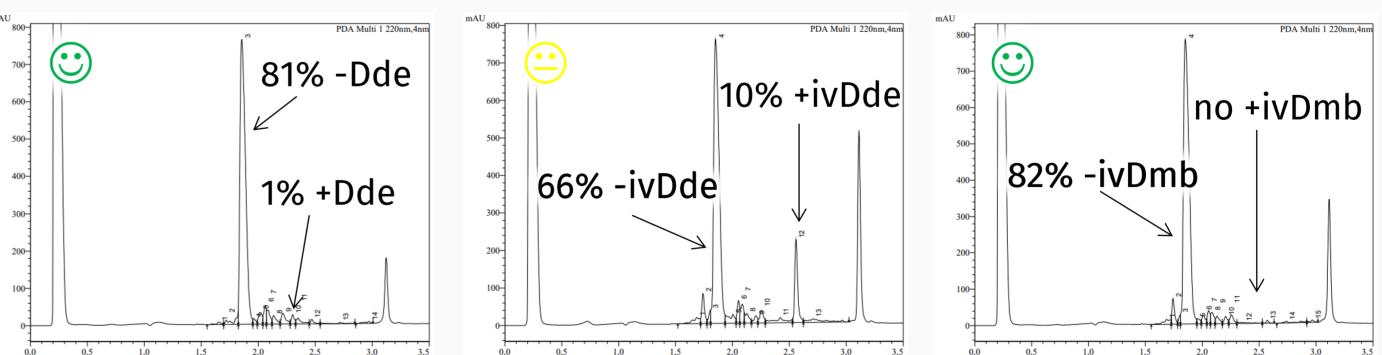
Stability


→ Fmoc-Lys(MeDmb/EtDmb/ivDmb)-OH are clearly soluble in DMF (0.5 M), stable for > 3d in closed vials at RT in DMF, and stable in TFA/H₂O for at least 4.5h

- Scrambling on side chains
 - → Synthesis of Boc-Lys(Fmoc)-Ala-Lys(X)-Pro-Lys(X)-Ala-(2CT-resin); 50% Pip/DMF, 30 min; cleavage 20% HFIP/DCM; LCMS: Boc-Lys-Ala-Lys(X)-Pro-Lys(X)-Ala-OH

mA		^{mAU} 3x	ivDde \bigcirc \rightarrow no scrambling	PDA Multi 1 220nm,4nm ص	mAU 1250-	MeDmb → partial scrambling	EtDmb → partial scrambl	PDA Multi 1 220nm,4nm	^{™AU} 1000- ivDmb⊙ → no scrambling	PDA Multi 1 220nm,4nm
	^{750–} 500– 2 X	500 400		82% target peptide with 2x ivDde	1000	3x	1250-	2x	750-	89% target peptide with 2x ivDmb
	250- 1 X	200					750-	3x j [≅]	250-	




- Stability during synthesis/cleavage
 - → Synthesis of Boc-Gly-Ser(tBu)-Ala-Leu-Gly-Lys(ivDmb)-Ala-Phe-Gly-Phe-Ser(tBu)-Glu(OtBu)-TG S Trt resin; treatment with various solvents; TFA cleavage

Cleavage of the side chain protecting group

→ "Standard" protocol 2% hydrazine monohydrate 3x3 min (left); "stronger" protocol 4% hydrazine monohydrate 5x5 min (right)

"Real" example

→ Synthesis of Boc-Gly-Ser(tBu)-Ala-Leu-Gly-Lys(X)-Ala-Phe-Gly-Phe-Ser(tBu)-Glu(OtBu)-TG S Trt resin (HATU/NMM; 30% piperidine/DMF; 200 mg Glu-TG; 0.19 mmol/g);

cleavage of ivDmb/ivDde ("stronger" protocol); coupling of 5-carboxyfluorescein; TFA cleavage; HPLC purification (RP18, ACN/H₂O/0.05% TFA)

	ivDde 😐	ivDmb 🙂
Crude yield	31 mg	37 mg
Crude purity	82% 5-Fluo + 4% ivDde	86% 5-Fluo + no ivDmb detectable
Isolated yield	10.9 mg (>95%) + 7.8 mg (82%) (repurification)	23.6 mg (>95%)

Summary

• Fmoc-Lys(ivDmb)-OH performs better than previously known orthogonally protected Lysines with regards to scrambling avoidance, deprotection completion, and peptide yield.

References:

[A] S.R. Chhabra, B. Hothi, D.J. Evans, P.D. White, B.W. Bycroft, W.C. Chan; Tetrahedron Lett. 1998, 39: 1603-1606.

[B] R.R. Wilhelm, A. Srinivasan, M.A. Schmidt; in "Peptides for the New Millennium, Proc. 16th American Peptide Symposium", G.B. Fields, J.P. Tam, G. Barany (Eds.), Kluwer Academic Publishers, Dordrecht, p. 58f.

[C] S. Ramkisson, H. H. Al-Rasheed, K. A. Dahlous, B. G. de La Torre, A. El-Faham, F. Albericio; *ChemistrySelect* 2021, **6:** 6626-6630.