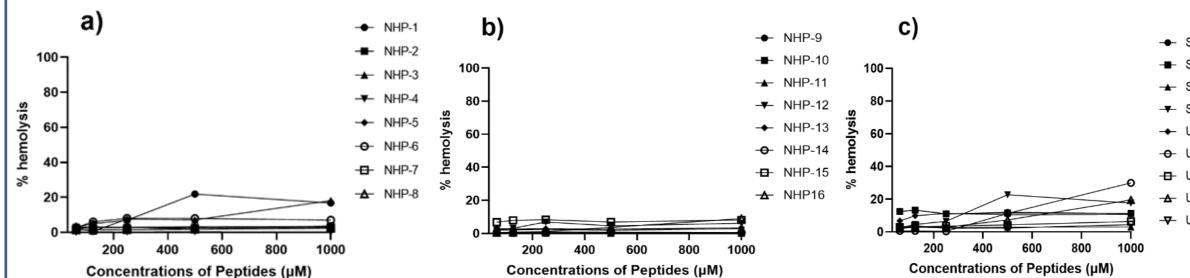
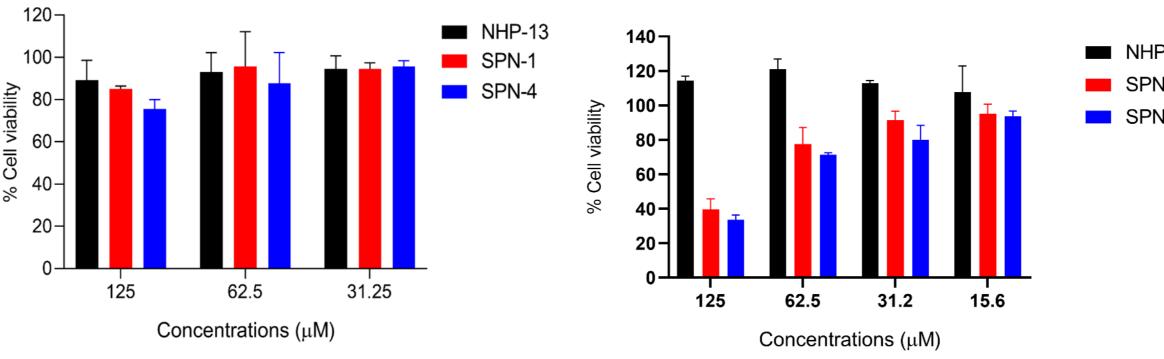

Synthesis and antimicrobial activity of hybrid peptides as dual inhibitor of intracellular targets in ESKAPE pathogens

Affiliation: Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi- 110062, India


https://doi.org/10.17952/37EPS.2024.P2150



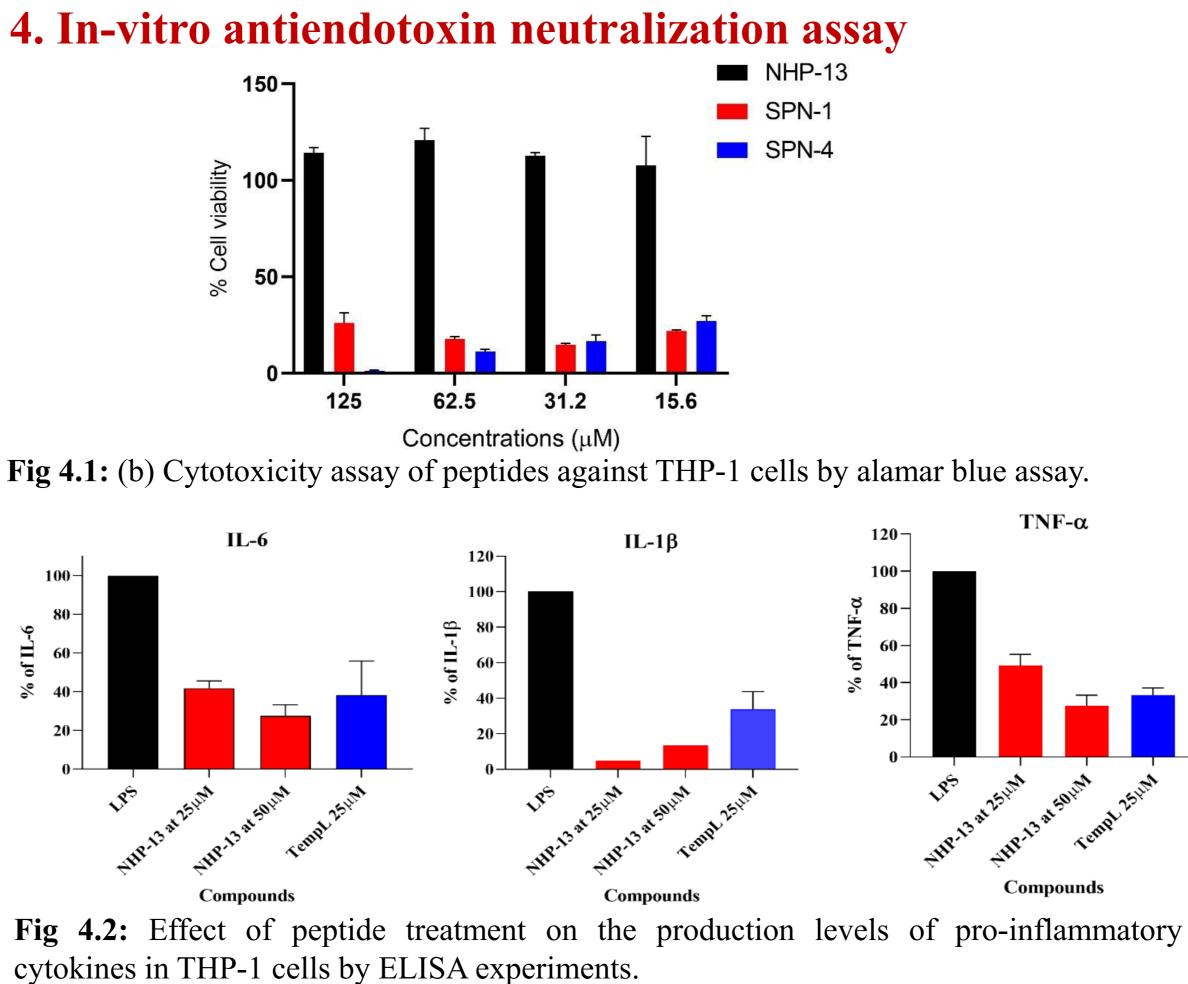

Covalent linker			Proline & Arginine rich antimicrobial peptides (PrAMPs)						
		S.no	PrAMPs	Peptide Sequence					
QLDLY	PRPRPPR	1.	Onc72	VDKPPYL <u>PRPRPPR</u> OIYNO					
		2.	Api88	Gu-ONNRPVYI <u>PRPRPP</u> HPRL					
DNA replisome	Ribosomal protein	5.	Api134	Gu-ONNRPVYI <u>PRPRPP</u> HPOL					
targeting peptide	targeting peptide	4.	A3-APO	(zRPDKPRPYL <u>PRPRPPR</u> PVR)2					
Covalent linkers can be of :- (a) unnatural linkers (non-peptide alkyl chains) &		5.	CheX1-R20	ZRPDKPRPYL <u>prprppr</u> pvr					
		6.	Pyrrhocoricin	VDKGSYL <u>PRPTPPRP</u> IYNRN					
(b) natural amino	· · · · · · · · · · · · · · · · · · ·	7.	PR-39 (1-18)	RRRPRPPYL <u>PRPRPPP</u> FF					

Table 1: Peptide name, sequence, and MIC of the synthesized peptides.													
S.No	Sequence of peptides	Sample Code	S. aureus ATCC 33591	S. aureus ATCC BAA-44	MRSE ATCC 56625	B. subtilis ATCC 6693	S. epidermidis ATCC 51625	E. coli ATCC 11775	P. aureginosa ATCC BAA-427	E. feacium ATCC 35667	A. baumannii ATCC 19606	K. pneumoniae ATCC BAA-1705	E. faecalis ATCC 7080
1	Ac-PRPRPPR- CONH ₂	Prn	>500	>500	>500	>500	>500	>500	>500	>500	>500	>500	>500
2	Ac-QLDLY-R- PRPRPPR- CONH ₂	NHP-11	500	500	500	500	500	500	>500	500	500	500	500
3	Ac-QLDLY-RR- PRPRPPR- CONH ₂	NHP-12	250	500	500	>500	500	250	500	250	250	500	250
4	Ac-QLDLY-RRR- PRPRPPR- CONH ₂	NHP-13	31.2	31.2	62.5	62.5	31.2	15.1	62.5	31.2	31.2	125	125
5	Ac-QLDLY-Spermine	Spn-1	62.5	31.2	62.5	62.5	31.2	250	250	250	250	250	250
6	Lauric acid-QLDLY- Spermine	Spn-4	7.8	7.8	15.1	7.8	7.8	31.2	62.5	31.2	31.2	125	62.5
7	Vancomycin	Van	0.4	1.9	1	ND	1	62.5	125	62.5	125	ND	125
8	Ciprofloxacin	Cipro	0.2	62.5	0.03	ND	0.03	0.02	0.8	0.5	0.8	ND	0.8

Cell cytotoxicity assay

Fig 6.2: Depolarization assay of NHP-13 peptide in live MRSA cells (at 2 × MIC).

- Hemolytic activity of the designed peptides were determined on fresh human red blood cells (hRBC) and were found nonhemolytic even at the concentration of 0.5 mg/mL.
- We conducted cytotoxicity study of the lead peptides by MTT assay method against HEK-293T cell lines at higher concentrations of the calculated MIC value obtained from antibacterial assay (as depicted as in Figure 3.2).

Drug resistance studies

• Resistance development studies of the peptides till 17 passages of bacteria. a) for *E. coli* ATCC 11775 and b) for *S. aureus* ATCC 33591.

□ **Mode of action studies**

- Peptide internalization studies (using confocal microscopy).
- Bacterial membrane depolarization assay.

Key findings

The peptide templates, PRPRPPR and QLDLY were employed to design for dual inhibition of protein and DNA synthesis, respectively. Peptide NHP-13 and SPN-4 was found to be active in the MIC range of 7.8-125 µM concentrations against tested strains with no hemolytic activity observed up to 500 µM concentrations.

□Further studies was performed to evaluate peptide internalization in bacteria by labelling with FITC.

The most active peptide (NHP-13) was hybrid of above two templates with linker of triple arginine, highlighting arginine's role in cell penetration and enhancing antibacterial activity.

□In vitro LPS neutralization activity of NHP-13 shown potential effects on reduction in inflammatory cytokines in human monocytes.

□Further studies are going on for evaluation of protein synthesis by interaction with 70s ribosomes and DNA replisomes.

AKNOWLEDGEMENT:

- Dr. Shalini Kumari (CSIR-IGIB, Mathura Road, New Delhi),
- Dr. Pradeep Kumar (CSIR-IGIB, Mall road, New Delhi),
- Central Instrumentation Facility, SPER, Jamia Hamdard (Hamdard Nagar, New Delhi.
- ICMR-EMR adhoc project (OMI/ECD-001/2021)
- Science Engineering Research Board (SERB) travel grant to attend EPS-2024