

IIT GUWAHAT

Short Catalytic Peptides for Carbon Dioxide Sequestration

Young Investigators Mini Symposium Flash Communications

Kalpana Kumari Doctor of Philosophy

37th European Peptide Symposium 14th International Peptide Symposium 25th - 29th August 2024 Florence, Italy

Molecular Informatics & Design Laboratory Biosciences & Bioengineering IIT Guwahati, Assam, India Supervisor: Vibin Ramakrishnan

Motivation and Problem Statement

IIT GUWAHATI

O. Zozulia, M. A. Dolan, and I. V. Korendovych, "Catalytic peptide assemblies," *Chem. Soc. Rev.*, vol. 47, no. 10, pp. 3621–3639, 2018. Fleming, S., and Ulijn, R. V. (2014) Design of nanostructures based on aromatic peptide amphiphiles, *Chemical Society Reviews* 43, 8150-8177.

Work done on Problem

IIT GUWAHATI

Morphological Characterization of Designed Peptides by Field-Emission Scanning Electron Microscope

$\begin{array}{c} 0 \\ 0 \\ 0_{2N} \end{array} \xrightarrow{O} + H_{2}O \xrightarrow{Peptide Catalyst} \\ 0_{2N} \\ 0_{2N}$				
Kinetic parameters of Peptide Catalysts				
Kinetic parameters	KK1	KK2	KK3	KK4
v _{max} (mM/s)	9.39 × 10 ⁻⁴	0.41 × 10 ⁻⁴	6.18 × 10 ⁻⁴	(No activity)
K _M (mM)	0.131	0.329	0.212	-
K _{cat} = v _{max} / Peptide concentration (s ⁻¹)	93.9 × 10 ⁻⁴	4.1 × 10 ⁻⁴	61.8 × 10 ⁻⁴	-
Catalytic efficiency = K _{cat} /K _M (M ⁻¹ s ⁻¹)	71.67	1.246	29.15	-

Catalytic efficiency: KK1> KK3> KK2> KK4 *Patent Filed: R20243014268*

Work done on Problem

2.0 -

1.8

Absorbance (A.U.) 7.1 4 7.1 4 7.1 4 7.1 4 7.1 4 7.1 7

0.4

0.2

0.0

2.0 -

1.8

1.6

Absorbance (A.U.) - 7.1 - 8.0 - 9.0 - 9.0

0.4

0.2

0.0

IIT GUWAHATI

pH changes during the hydration of CO₂ Followed by Formation of CaCO₃ during Sequestration in the Presence of Different Catalysts

Thank You