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01. Introduction

Messenger RNA (mRNA) has no risk of insertion into the host genome, and can express any
encoded protein in the cell. Furthermore, small interfering RNA (siRNA) can target genes that
cannot be targeted by conventional small molecule drugs and can suppress gene expression in a
sequence-dependent manner through RNA interference. Therefore, nucleic acids such as mRNA
and siRNA are expected to be next-generation modalities. However, nucleic acids are difficult to
permeate cell membranes by themselves due to their high hydrophilicity and large molecular size.
Therefore, it is important to develop drug delivery system (DDS) carriers that transport nucleic acids

02. Purpose

We have focused on magainin 2 (Mag2), a naturally occurring amphipathic antimicrobial
peptide (AMP), and have developed helix-stabilized Mag2 derivatives containing non-
proteinogenic amino acids.’? Because AMPs are capable of intracellular trafficking, they
have potential applications as intracellular transport molecules for nucleic acids. In this study,
we aimed to develop novel CPPs based on Mag2 that efficiently transports several types of
nucleic acids, such as pDNA, mRNA, and siRNA, into the cell.

1) M. Hirano et al., ChemPlusChem 2020, 85, 2731-2736; 2) M. Hirano et al., Molecules 2021, 26, 444.

into cells, and cell-penetrating peptides (CPPs) have attracted attention as one of promising
carriers.

03. Design and Synthesis of Peptide S5 = (S)-2-(4-Pentenyl)alanine, Rs = (R)-2-(7-Octenyl)alanine

Peptide Sequence Peptide Sequence

Mag2 H-GIGKFLHSAKKFGKAFVGEIMNS-NH2 st7-1 H-Rs TKKFLKSs  AKKFVKAFK-NHz2

Pep-1 H-GIKKFLKSAKKFVKAFK-NHz st7-2 H-GRs KKFLKSSs KKFVKAFK-NHz2

st4-1 H-55"IKKSs LKSAKKFVKAFK-NH2 st7-3 H-GIKKRs LKSAKKSs VKAFK-NH2

st4-2 H-GSs KKFSs KSAKKFVKAFK-NHz st7-4 H-GIKKFRs KSAKKFSs KAFK-NHz

st4-3 H-GIKKSs LKSSs KKFVKAFK-NHz st7-5 H-GIKKFLKR:"AKKFVKSs FK-NHz2

st4-4 H-GIKKFLKSs AKKSs VKAFK-NH2 st7-6 H-GIKKFLKSRs KKFVKASs K-NHz

st4-5 H-GIKKFLKSSs KKFSs KAFK-NHz Se*, Sa* Pep-1_R H-GIRRFLRSARRFVRAFR-NHz

st4-6 H-GIKKFLKSAKKSs VKASs K-NH2 st7-5 R H-GIRRFLRRs"ARRFVRSs FR-NH2

04. Intracellular Delivery of plasmid DNA (pDNA) N/P ratio: Ratio of positive charge of peptide side chain to negative charge derived from nucleic acid.
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07. Summary
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@ We designed and synthesized stapled peptides based on Mag2 for the intracellular delivery of nucleic acids.
4 The stapled peptide st7-5_R formed a small complex with pDNA and achieved efficient intracellular transport.

4 The st7-5_R/pDNA complex was internalized into the cell by multiple endocytic pathways, independent of
any specific pathway.

4 st7-5_R also formed complexes with mRNA and siRNA to achieve their efficient intracellular transport.

M. Hirano et al., Chem. Sci., 2023, 14, 10403-10410.



