https://doi.org/10.17952/37EPS.2024.P1182 Innovative microfluidic preparation of monodisperse peptidic nanoparticles for ultrasound guided gene delivery

9

Guy GOUARIN*, Vicentiu MORARU and Samir CHERKAOUI

INTRODUCTION

Context – Gas-filled microbubbles (MB), clinically approved as ultrasound (US) contrast agents, have demonstrated efficacy in drug and gene delivery by exploiting the sonoporation phenomenon.¹

Problematic – Intravascular microbubbles (MB) have a relatively short lifespan and are unable to accumulate in tissues due to their large size (1 to 10 µm), thus limiting their efficacy.

Solution – Perfluorocarbon nanodroplets (ND) could overcome those challenges due to their submicrometric size. Moreover, an external ultrasound stimulus can convert them into gaseous microbubbles by a phenomenon called acoustic droplet vaporization (ADV).² Nanopeptisomes (NPP) represents a new class of nanodroplets taking advantages of peptide versatility.³

NANOPEPTISOME DESIGN

Hydrophilic cationic moiety using either Cell Penetrating Peptide (CPP) or Nuclear Localization Sequence (NLS) to bind anionic payload (PreS2, SV40, Pepfect14).

BRACCO SUISSE SA, Plan-les-Ouates, Switzerland

Cross-linking region is expected to enhance the NPP stability.

Hydrophobic fluorinated tail stabilize the PFC liquid core.

guy,.gouarin@bracco.com

BRACCO

LIFE FROM INSIDE

NANOPEPTISOME PREPARATION^{4,5}

Peptide Aqueous Solution

Microfluidics

Nanopeptisomes Suspension

the aqueous & organic phases

 \rightarrow 2:1 (aqueous : organic)

MICROFLUIDICS PROCESS SETTINGS

Flow Rate Ratio (FRR): Volumetric ratio of

Total Flow Rate (TFR): Total speed at which

both fluid streams are injected \rightarrow 10 mL/min

DIALYSIS

O Solvent:

- Oxidation: Aqueous DMSO (2.5% v/v)
- Purification: 5% Glucose
- **ó MWCO:** 10 kDa
- pDNA Coated Nanopeptisomes Suspension

pDNA Coating

- **Plasmid:** pCPG-hCMVSCEP-LucSH
- Solvent: 5% Glucose
- Incubation: 15 min, r.t.
- **NPP Concentration:** 10⁹ p/mL
- pDNA Concentration: 10 µg/mL

CHARACTERIZATION

Particle characterization

Methods: DLS, NTA and Fluorometry

Properties:

- Size (nm),
- PolyDispersity Index (PDI), • ζ-Potential (mV), Concentration (p/mL),

Zetasizer Nano DLS

NanoSight NS300

NTA

- Progressive increase of the acoustic pressure
 - applied to the nanopeptisomes.
 - **O ADV threshold** defined as the minimum acoustic pressure required to convert liquid

Acoustical characterization

Shell: Peptidic Surfactants Core: \mathbf{O} - C₆F₁₄; Perfluorohexane PFH (b.p. 56°C)

FORMULATION

- C₅F₁₂ Perfluoropentane PFP (b.p. 29°C)

DNA Coating (µg/mL or µg/p).

PFC non echogenic droplets into echogenic microbubbles.

RESULTS

Perfluorohexane Core NPP Characterization

Peptide	Concentration (p/mL)			ζ-Potential (mV)		
	Before Dialysis	After Dialysis		Peptide	Before Coating	After Coating
PepFect14	2,5x10 ¹⁰ ± 0,2	7,6x10 ⁹ ± 0,04	N	PepFect14	58,9 ± 9,1	-1,1 ± 3,3
PreS2	*	*		PreS2	24,7 ± 0,7	-32 ± 1,1

Perfluoropentane Core NPP Characterization

- Similar trend to perfluorohexane NPP relative to the concentration evolution.
- No aggregation observed (= Size, PDI), ζ -Potential still highly positive, thus maintaining electrostatic repulsion between NPP.

Acoustic Response Study

ADV Threshold Mechanical

 $1,0x10^{10} \pm 0,4$ **PepFect14/PreS2** $3,5x10^{10} \pm 0,3$ **PepFect14/SV40** 2,6x10¹⁰ \pm 0,2 1,6x10¹⁰ \pm 0,03 Ľ * On going analysis.

PepFect14/PreS2	66,8 ± 3,5	-17,8 ± 4,6
PepFect14/SV40	60,8 ± 4,0	-18,6 ± 3,0

- Successful formulation of monodispersed NPP (PDI ≤ 0,2).
- Oxidative dialysis cause a decrease of NPP concentration.
- Coating induce aggregation (> Size, PDI and > ζ-Potential) by diminishing electrostatic repulsion between NPP.

Gas	(MPa)	Index	
C ₆ F ₁₄	~ 10,20	~ 4,16	
C ₅ F ₁₂	~ 7,64	~ 3,13	

- Acoustic properties only driven by the perfluorocarbon liquid core.
- Mechanical Index suitable only for therapeutic applications.

CONCLUSIONS

- **pDNA coated nanopeptisomes** offer an **innovative nanometric support** to **deliver genetic material** through sonoporation combined with echographic visualization.
- **Peptidic composition** of the shell display **little influence** on the **particle properties** (size, PDI, concentration and ζ -Potential) offering a vast choice of peptide sequence depending on the target.
- This study underlines the importance to control both dialysis and coating steps to ensure the best NPP. properties.

- Fourrier et al., Microbubbles for human diagnosis and therapy, *Biotmaterials*, **2023**, 294 2. Melich et al., Microfluidic preparation of various perfluorocarbon nanodroplets: Characterization and determination of acoustic droplet vaporization (ADV) threshold -Int. J. Pharm., **2020**, 587
- 3. Medina et al., Fluorous Phase-Directed Peptide Assembly Affords Nano-Peptisomes Capable of Ultrasound-Triggered Cellular Delivery, Angew. Chem. Int. Ed. Engl., 2017, 56 4. Microfluidic preparation of fluorocarbon cross-linked vesicles – WO2023/08450048 5. Cationic Cross-Linked Vesicles - WO2024/133892