

Therefore, the thiol-yne click (TYC) reaction expands the chemistry of thiol-ene, providing access to a broad range of new properties.³

Green Continuous-Flow Bioconjugation

- Flow chemistry possesses a multitude of advantages, such as greater control over selectivity and reproducibility, less hazardous reaction setups and easier scale-up, and is therefore ideal for pharmaceutical and industrial applications.⁴
- Deep Eutectic Solvents (DESs) and bio**based solvents** are promising candidates to significantly greener solvent provide options.
- The goals of flow chemistry and green chemistry are **ideally aligned** in prioritising highly development of efficient the synthetic approaches.

Green Optimisation

TEC was optimised with 2 different alkenes in batch and under continuous flow, utilising DES and Bio-based solvents. Glutathione (GSH) was selected as a model thiolated peptide substrate due to its therapeutic potential.

Disulfide rebridging

Essential disulfides present a target that is known to be susceptible to topological changes upon reduction, and thus deactivation.

Chain Transfer

Surface exposed disulfide bonds allow for the in-situ generation of unique functionalization sites through mild reduction, followed by selective chemical rebridging with unnatural linkers.⁵

i) >99% reduction of the disulfide by NaBH₄ (2.0 eq.) was observed in 30 min.

HC	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	n = 1 $n = 2$		$ \begin{array}{c} $	ОН						
Solvent /H ₂ O (3:2), 20 min, rt, hv											
Entry	DES	n = 1 Conv. ^a	n = 1 Conv. ^b	n = 2 Conv. ^a	n = 2 Conv. ^b						
I	ChCl: EG (2:1)	>99%	83%	98%	91%						
П	ChCl: Gly (2:1)	Quant.	84%	>99%	Quant.						
111	2Me-THF + BHT	>99%	95%	>99%	86%						
IV	PC	Quant.	96%	>99%	>99%						
V	BP	Quant.	93%	>99%	>99%						
VI	HEP	98%	96%	Quant.	Quant.						
VII	DMI	>99%	96%	Quant.	Quant.						
Scale-ur	examples										

ii) TYC stapling

PDA Multi 2 220nm,4nm	Entry	SH : alkyne (eq.)	Dithiol Concentration (mM)	Solvent	Additive	Disulfide conversion	Product conversion	Startin Dithio
	1	1:1	4.86	H ₂ O:ACN (9:1)	FA	45%	52%	>3%
	2	1:2	4.86	H ₂ O:ACN (9:1)	FA	34%	58%	8%
25 30	3	1:4	4.86	H ₂ O:ACN (9:1)	FA	34%	50%	16%
+MS_1.0min #61	4	1:1	9.72	H ₂ O:ACN (9:1)	FA	29 %	71%	0%
	5	1:1	19.4	H ₂ O:ACN (8:2)	FA	50%	25%	25%

One of the peptide glycosylation reactions reported in this study was this RGD peptide with DES and water under continuous flow along with a tumour homing peptide and an AFP peptide.

In this work, we report TEC mediated reactions under continuous-flow in both aqueous conditions, using 'green' solvents and furnishing biologically active glycopeptides in high yield. We also report a highly efficient TYC-mediated approach for peptide rebridging that can be applied to disulfide containing peptides. Following disulfide reduction, the radical-mediated crosslinking of the free thiol moieties via sequential thiol-yne ligation furnishes the covalently bound peptide macrocycle. TEC and TYC proved to be a promising and novel green strategy in the functionalisation of active peptide derivatives.

[1] I. Rabadán González, E. M. Scanlan et al., Org. Biomol. Chem., 2024, 22, 2203-2210. [2] M.D. Nolan, R. Petrarca et al., Org. Biomol. Chem., 2022, 20, 8192-8196. [3] C. N. Bowman et al., J. Mater. Chem., 2010, 20, 4745–4750. [4] F. Chen, et al., Green Synth. *Catal.*, 2022, **3**, 243-258. [5] D. A. Richards, J. R. Baker *et al.*, *Org. Biomol. Chem.*, 2016, **14**, 455–459.