

https://doi.org/10.17952/37EPS.2024.P2078

Characterization of Aurora-A Activation and Allosteric Regulation by TACC-3 Peptidomimetics

Diana Gimenez,^{a,b} Martin Walko,^{b,d} Jennifer A. Miles,^{c,d} Richard Bayliss,^{c,d} Megan H. Wright^{b,d} and Andrew J. Wilson^{a,b,d,*}

^[a] School of Chemistry. University of Birmingham, Birmingham B15 2TT, UK. ^[b] School of Chemistry and ^[c] Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. ^[d] Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.

TACC3 / Aur A Protein-Protein Interaction

Aurora-A is a Ser/Thr protein kinase that regulates key mitotic events by recruiting and phosphorylating a range of different intrinsically disordered proteins. Among them, the Aurora-A interaction with TACC-3 (Transforming Acidic Coiled-Coil Containing Protein 3) is instrumental for spindle assembly and chromosome segregation,^{2,3} and is frequently upregulated in many different types of cancer.⁴

Figure 1. Key features of the Aurora-A/TACC-3 complex. (a) Crystal structure of the Aurora-A catalytic domain (green) in complex with TACC-3₅₂₂₋₅₆₃ (orange; PDB: 50DT). (b) Sequence of TACC-3 docking region to Aurora-A, TACC-3 ₅₂₂₋₅₆₃, and individual FA dissociation constants (K_d) for each domain. (c-d) MD calculated energy minimum structure of WT TACC-3₅₂₂₋₅₃₆ in the presence of Aurora-A, showing the key Phe525^{TACC-3} and Pro528^{TACC-3} exo-pucker conformation.

Optimization of Phe525 and Pro528 interaction with Aur-A

By using unnatural phenylalanine analogs and exploiting stereo-electronic effects (i.e. gauche effect) twelve-fold improved Kd values were measured for new constrained peptides when compared to the linear sequences, with all variants showing low micromolar/high nanomolar affinities.

E-mail: d.gimenez-ibanez@bham.ac.uk

Bph constraints restrict the conformational landscape and orientates the key ⁵²⁵Phe predisposing the peptide towards Aur A binding

Enhanced binding of peptidomimetics to Aur-A is entropically driven

To explore how restricting the accessible conformations influences the thermodynamics of binding, we carried out isothermal titration calorimetry (ITC) and variable-temperature FA experiments. Constrained variants exhibited a more favorable entropy of binding in comparison to the linear variants.

Figure 2. Key features of TACC-3 constrained peptidomimetics. (a) Iodinated (4-I)-Phe525^{TACC-3} in its binding pocket. (b) Exo-pucker conformation of fluorinated trans-(4-F)Pro528^{TACC-3} in its binding pocket.

TACC-3₅₁₈₋₅₃₂ peptidomimetics stimulate Aur-A

Linear WT variants are relatively poor activators of the kinase, whereas the constrained peptidomimetics stimulate Aurora-A and promote substrate phosphorylation in a dose-dependent manner by up to 160-190%.

Figure 3. Thermodynamics of binding in the presence of Aurora-A. (a) ITC thermodynamic signatures of linear TACC-3₅₁₈₋₅₃₂ and (b) constrained TACC-3_{518-532-S/E-Bph-I/fP} binding to Aurora-A_{122-403-C290A/C393A}; (c) Diagram schematically illustrating the hypothetical free energy profile of a one-step/one-barrier peptide-protein binding event for a linear and a constrained peptide.

TACC-3_{518-532-L/R-Bph-I/fP} as an allosteric inhibitor of the N-MYC/Aur-A interaction

Constrained peptidomimetics exhibited limited evidence of TPX2 displacement, indicating promising specificity for the TACC-3 binding site (IC50 >> 200 µM). Surprisingly, the constrained variants were observed to out-compete N-MYC.

Figure 3. Kinase activation by peptidomimetics. (a) Qualitative kinase assay monitoring the autophosphorylation of unphosphorylated Aurora-A in the presence of TACC-3₅₂₂₋₅₃₆ and constrained peptides (all peptides 10 μM). (b) % Kinase activation of Aurora-A (10 nM) in the presence of linear and constrained TACC-3 peptides as measured in ADP-Glo assays.

Figure 7. Constrained TACC-3_{518-532_Bph_LR_IF/fP} as an allosteric inhibitor of N-MYC/Aurora-A PPI: (a) Aligned x-ray crystal structures of TACC-3/Aurora-A complex (PDB: 50DT), TPX2 (PDB: 10L5), and N-MYC (PDB: 5G1X); (b) FA competition assay of control N-MYC₆₁₋₈₉ (black line) and constrained TACC-3 518-532_Bph_LR_IF/fP (forest green) against FAM-Ahx-N-MYC₆₁₋₈₉ (200 nM), and reverse assay in the presence of Aurora-A; (c) Competition FA N-MYC IC50's values for N-MYC₆₁₋₈₉ at increased TACC-3_{518-532 Bph LR IF/fP} concentrations; (d) X-ray crystal structures of TACC-3/Aurora-A and N-MYC/Aurora-A complexes.

Conclusions We have developed a series of constrained peptides that inhibit TACC3/Aurora A PPI with up to 12-fold enhanced IC₅₀/K_d values. NMR and MD analysis of the peptides show that improved affinities are achieved due to the combined effect of restricting the conformational landscape of the peptide (Bph constraints), fine-tunning the orientational preference of the key Phe525 (4) and 4Br-Phe substitutions) and conformational pucker-ring selection at the Pro528 level (4F-Pro). Our minimal peptidomimetics are sufficient to induce the conformational changes needed to activate the kinase by binding only the "F" pocket on the N-lobe, and to allosterically displace N-MYC from its binding site. Knocking-out the TACC-3/Aurora-A interaction without affecting kinase activity represents a promising alternative to active-site kinase inhibition. Similarly, inhibition of the Aurora-A/N-MYC interaction without downregulating other Aurora-A essential functions also represents a major target for anticancer drug-development.

References

1. Barr, A. R.; Gergely, F. J Cell Sci. 2007, 120 (Pt 17), 2987–2996. 2. Burgess, S. G.; Peset, I.; Joseph, N.; Cavazza, T.; Vernos, I.; Pfuhl, M.; Gergely, F.; Bayliss, R. PLOS Genetics. 2015, 36. 3. Burgess, S. G.; Mukherjee, M.; Sabir, S.; Joseph, N.; Gutiérrez-Caballero, C.; Richards, M. W.; Huguenin-Dezot, N.; Chin, J. W.; Kennedy, E. J.; Pfuhl, M.; Royle, S. J.; Gergely, F.; Bayliss, R. The EMBO Journal. 2018, 37 (8). 4. Ha, G.-H.; Kim, J.-L.; Breuer, E.-K. Y. Cancer Letters. 2013, 336 (1), 24–335.

Acknowledgements

This work is financed by the Biotechnology and **Biological Sciences Research Council (BBSRC)** BB/V003577/1

Biotechnology and Biological Sciences Research Council