

Conformational and self-assembly studies of a protein-mimetic peptide from Pseudomonas aeruginosa's YeaZ protein

Elettra Fasola¹, Giulia Alboreggia ¹, Stefano Pieraccini², Francesco Oliva ², Fatima Ezzahra Agharbaoui², Michela Bollati³, Giovanni Bertoni⁴, Sandro Recchia¹, Marcello Marelli⁵, Umberto Piarulli¹, Sara Pellegrino⁶ and Silvia Gazzola¹

Science and High Technology Department, University of Insubria, Como, Italy; 2 Chemistry Department, University of Milan, Italy; 3 CNR and Department of Biosciences, Institute of Biophysics, University of Milan, Milan, Italy; 4 Department of Bioscience, University of Milan, Milan, Italy; 5 CNR-SCITEC—Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Milan, Italy; 6 Pharmaceutical Science Department, University of Milan, Milan, email: <u>efasola@uninsubria.it</u> Italy.

https://doi.org/10.17952/37EPS.2024.P1317

BACKGROUND

Protein-mimetic peptides (PMPs):

shorter sequences of proteins and biocompatible building blocks with multiple applications.

Self-assembly:

association process of individual building block units into highly ordered structures.

PaYeaZ:

self-assembling protein from *P. aeruginosa*, involved in the formation of an essential protein complex.

PaYeaZ shows protein-protein interactions

YeaZ-YgjD complex (6z81)

METHODS

thanks to an α -helical surface domain

RESULTS

First Subhunit

Mutation $\Delta\Delta G$ (kcal/mol)

THR70ALA

VAL72ALA

ARG73ALA

ILE74ALA

ILE76ALA

VAL78ALA

GLN80ALA

LEU82ALA

PHE84ALA

LEU86ALA

-0.5497

0.0956

-13.0972

3.5133

0.2629

2.1032

-0.1673

3.2982

7.5524

1.6491

for material science applications

STUDY

Peptides' design

- Identification of the shortest sequence mainly responsible of **protein-protein interactions** in YeaZ homodimer
- Determination of the essential residues for interactions and helicity

Computational studies

- Identification of the **surface accessible residues** in the homodimer of YeaZ (4y0w) Vecchietti, Davide, et al. BBRC 470.2 (2016): 460-465
- **Hot spots** identification by Computational Alanine Scanning (CAS)
- Introduction of a **polar group** at the C-terminal to enhance hydrophilicity and aggregation properties

THR70ALA

VAL72ALA

ARG73ALA

ILE74ALA

ILE76ALA

VAL78ALA

GLN80ALA

LEU82ALA

PHE84ALA

LEU86ALA

Second Subhunit

Mutation $\Delta\Delta G$ (kcal/mol)

0.3585

0.0717

-8.6279

0.6214

0.8843

1.5774

-1.434

2.2705

10.6594

1.3862

Arg73 – Leu86 in the YeaZ protein is the main responsible domain for protein-protein interactions

 $\Delta\Delta G < 0$: more stable with Ala $\Delta\Delta G > 0$: less stable with Ala

- Ile74, Val78, Leu82, Phe84: hot spots **Arg73:** substituted with Ala
 - **A**IAIGVVQGLAFAL **PMP1** AIAIGVVQGLAFAL<mark>GG</mark>KKK<mark>G</mark> PMP2

Peptides' synthesis and characterization

Solid Phase Peptide Synthesis

						0.1 mM PMP2	
Name	Sequence	Yield	Purity	Helix%	h		
PMP-2	AIAIGVVQGLAFALGGKKKG	60%	96%	35%	N 20-	100% TFE	Only PMP2 is α-helical and
PMP-3	VVQGLAFALGGKKKG	42%	97%	7%	θ 10	50% TFE	able to form
PMP-4	LAFALGGKKKG	25%	95%	8%			supramolecular
PMP-5	AIAIG VVQ GGKKKG	36%	98%	12%	-20 -20 190	200 210 220 230 240 nm	

- PMP2 and shorter derivatives PMP3-5
- Secondary structure by Circular Dichroism

^a Coupling conditions – 1: Fmoc-aa-OH 3-5 eq, DIPEA 9-15 eq, COMU 3-5 eq. Coupling conditions – 2 : Fmoc-aa-OH 3-5 eq, DIC 3-5 eq, Oxyma 3-5 eq.

- Supramolecular aggregates morphology studies
- Comparison between hydrophilic and hydrophobic environment
- Dependance on concentration
- Aggregates stability in DMSO

- Thioflavin T assay
- Dynamic Light Scattering
- Attenuated Total Reflectance

OUTLOOK AND CONCLUSION

- **PMP1** is the main sequence responsible for YeaZ-YeaZ and YeaZ/YgjD interactions
- PMP2 is an amphiphilic, more soluble derivative of PMP1, and the shortest sequence able to maintain helicity outside the protein environment
- The secondary structure is related to aggregation abilities: only the helical **PMP2** forms aggregates
- The secondary structure and type of aggregates depends on the environment (hydrophobic vs hydrophilic)
- **PMP2** aggregates are stable to DMSO, and in water a stable hydrogel is formed

37th European Peptide Symposium

Overall, we were able to obtain a biocompatible protein-mimetic building block, able to maintain α -helix and to form aggregates. A conformational switch to β sheet occurs in hydrophilic conditions.

14th International Peptide Symposium