

Ex.) Penetratin, Oligoarginine

♦ The formation of TCF is induced when TCF interacts with β -catenin.

of TCF

 \diamond The binding surfaces of the *N*-terminal region of TCF and LRH-1 on β -catenin partially overlap. Furthermore, the crystal structure analysis revealed that Y306, K345, and W383 of β-catenin are

 \Rightarrow The Wnt/ β -catenin signaling pathway is transcriptionally activated through the interaction between β -catenin and T-cell factor (TCF).

Transcriptional

activation

β-catenin

TCF

 \Rightarrow Excessive transcriptional activation of Wnt/ β -catenin pathway is associated with the pathogenesis of various cancers.

02 In silico design of peptides

In particular, the N-terminal region of TCF is important for interaction with β-catenin.

that inhibits C-terminal helix of TCF and *β*-catenin showed anticancer activity.¹⁾

important for interaction with LRH-1.²⁾

- \diamond We designed peptide-based inhibitors using a partial sequence of LRH-1.³⁾
- \diamond The inhibitory activity of the **Penetratin-st1** was not sufficient (20 μ M).

Penetratin-st1 : RQIKIWFQNRRMKWKK- β Ala-AA-S₅*-LDY-S₅*-Nle-CNY

- > Improving the peptide structure is required to enhance the inhibitory activity of Penetratin-st1.
- > To reduce effort and costs, efficient peptide design using in silico methods was implemented.

03 Synthesis of peptides

► NIe (norleucine)-derivative peptides 2 and 3 were designed. In addition, a stapled peptide st3 and its penetratin conjugated peptide Penetratinst3 were also designed.

Peptide	Sequence	
1	βAla-AALLDYT-Nle-CNY	
2	β Ala-ARLLLYT-Nle-RNY C terminal =	· NH;
3	$\beta Ala - AFLLLYT - Nle - RNY$	cine atior
st3	β Ala-AF-S ₅ *-LLY-S ₅ *-Nle-RNY Nle (S ₅ *, S ₅ *)	allor
Penetratin-st3	RQIKIWFQNRRMKWKK-βAla-A <mark>F</mark> -S ₅ *-LLY-S ₅ *-Nle- <mark>R</mark> NY	
Penetratin-st1	RQIKIWFQNRRMKWKK-βAla-AA-S ₅ *-LDY-S ₅ *-Nle-CNY	

04 MD simulations

similar RMSD values, and were predicted to form stable complex

> An integrated scientific computing software, Molecular Operating Environment (MOE) was used to optimize the peptide sequence targeting β -catenin based on affinity scores.

AALLDATMCNYPQQT AALLDRTMCNYPQQT AALLDNTMCNYPQQT

Each amino acid residue

2. Scoring

■ The affinity of the peptide mutants for β -catenin was evaluated by dAffinity which was measured as a difference between the binding energies of the wild-type and mutants.

Negative dAffinity

 \Rightarrow Peptide-protein complex was stabilized.

Positive dAffinity

 \Rightarrow Peptide-protein complex was destabilized.

/	Mutation C487R	dAffinity -5.38	dAffinity	Number of mutants		
	D483R	-4.08	0<	114		
	C487M	-3.41	≧0	146		
4	•	•	total	260		
Ex.) C487R						

3. Residue Scan

LRH-1₄₇₉₋₄₈₉

4. Scoring

Mutations were only introduced to amino acid residues that side chains are located at the interaction interface with β -catenin.

2H-1 ₄₇₉₋₄₈₉	Amino acid residue	Mutation
	A480	Y, F, Q, R
	D483	M, L, H, R
AALLDYTMCNY	C487	Y, F, L, Q, N, V, W, M, I, R
	N488	Κ

Peptides 2 and 3 which have dAffinity value of -10 or less were selected as candidates.

Ex.) C487R	x.) C487R			N	Number of	Peptide	Sequence	dAffinity
β-Catenin/peptide	mutant	complex	was	uAnnity	mutants	2	ARLILYTMRNY	-10 76

in the sequence was replaced by the other 19 natural amino acids.

stabilized.	0<
Predicted to interact with higher affinity	≧C
Mutations with dAffinity value of -1 or less	tota
were extracted.	

600 **AFLLLYTMRNY** -10.16 60

deficit : mutations

05 Binding activity

► The binding activity of 5(6)-carboxyfluorescein-labeled (F-) peptides to β -catenin was evaluated by the fluorescence polarization assay.

- ✓ Peptide **F-3**, designed using MOE, showed similar binding activity as the lead peptide F-1.
- ✓ The stapled peptide **F-st3** further enhanced binding activity.
- X Peptide F-2, which was expected to improve, showed reduced affinity.

MD simulation results showed that peptide **2** was more flexible than the other peptides, suggesting that peptide conformational flexibility may correlate with the binding affinity.

06 Interaction analysis

660

1. Mutational analysis

 \blacktriangleright The interaction surface of peptides for β -catenin was analyzed by binding assay using mutant of β -catenin (Y306A, K345A, W383A).

 \checkmark The binding activity of **F-35** (StAx), which binds to β -catenin

✓ Peptides F-1, F-3, and F-st3 showed reduced affinity.

at a different region, was maintained.

- 2. Cryo Electron Microscopy
 - ► Cryo-EM analysis of the structure of β -catenin/peptide was attempted.

 \checkmark In this experiment, a map with a resolution of 4.07 Å was obtained. Conditions are being optimized to obtain higher resolution maps to allow analysis of peptide binding sites. In addition, preparations for crystal structure analysis are underway.

07 Cell based assays

- 2. Evaluation of Wnt signaling-mediated

inhibitory activity

0.1 μM 0.3 μM

50 µM

IWR-1endo

🎾 IWR-1-endo

08 Conclusion

1. Evaluation of cell growth inhibitory activity

- ✓ **Penetratin-st3** inhibited the growth of only DLD-1 cells at 5 µM.
- \triangleright The peptide has a specific growth inhibitory effect on the Wnt-signaling pathway.
- ✓ **Penetratin-st3** has higher inhibitory activity than the reported peptide **Penetratin-st1**.
- ✓ A concentration-dependent decrease in luminescence intensity was observed for cells treated with Penetratin-st3.

1 µM

3 µM

5 µM

Wnt(+)

Wnt(-)

0.5 µM

Penetratin-st3

 \triangleright **Penetratin-st3** intracellularly binds to β -catenin to inhibit its transcriptional activity by preventing the formation of the TCF/ β -catenin complex.

 \checkmark In this study, the peptide sequence was designed using MOE.⁴⁾

✓ **Penetratin-st3** was found to have four-fold stronger inhibitory activity than previously reported peptides.⁴⁾

4) M. Fujita, et al., Bioorg. Med. Chem. 2023, 84, 117264.