

https://doi.org/10.17952/37EPS.2024.P2146

<u>Wael El Yazidi Mouloud</u>¹, Sibusiso B. Maseko ², Yasmine Brammerloo ², Inge Van Molle ^{3,} Adria Sogues Castrejon ³, Charlotte Martin¹, Han Remaut³, Steven Ballet¹, Oleksandr Volkov ^{3,4}, Jean-Claude Twizere ^{2, 5, 6}

¹ Research Group of Organic Chemistry – Vrije Universiteit Brussel (VUB) – Brussels (BE)
 ² Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute – University of Liege – Liège (BE)
 ³ VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB) – Brussels (BE)
 ⁴ Jean Jeener NMR Centre – Brussels (BE)
 ⁵ TERRA research and teaching centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech – University of Liege – Liège (BE)
 ⁶ Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math – New York University of Abu Dhabi – Abu Dhabi (UAE)

e-mail: wael.el.yazidi.mouloud@vub.be

NUCLEAR MAGNETIC RESONANCE [II]

Tax-1 is the most pathogenic protein of the human T-cell leukemia virus type 1 (HTLV-1), an oncogenic virus responsible for the onset of an aggressive form of cancer, adult T-cell leukemia (ATL). The oncoprotein undergoes protein-protein interactions (PPI) with a plethora of host proteins, such as the human homologue of the *Drosophila discs large* (hDlg1) tumor suppressor which is implicated in HTLV-1's oncogenic abilities.¹This study aimed at the characterization of the interaction between HTLV-1 Tax-1 and hDlg1 PDZ domains.²

The interaction was characterized through **nuclear magnetic resonance** (NMR) and X-ray **crystallography**, additionally **isothermal titration calorimetry** (ITC) was utilized to quantify the strength of the respective interactions. Our work provides structural insights essential in the pursuit of **PPI inhibitors**.

PDZ domains predominantly interact with the *C*-terminal tail of their binding partners, appropriately called **PDZbinding motif (PBM)**,³ thus a similar interaction was expected with Tax-1. Peptides mimicking the *C*-terminal tail of the Tax-1 protein were synthetized and their respective interactions with the PDZ domains was evaluated through [¹H,¹⁵N] heteronuclear single-quantum correlation (HSQC).

> Both interactions are **enthalpically** driven, with the decamer binding stronger to **PDZ2**.

CONCLUSIONS [V]

> Solution NMR revealed the binding hotspots to be located in the $\beta 1/\beta 2 \log \beta$, $\beta 2 strand$ and $\alpha 2$ helix.

> Only the last four amino acids (H-Glu-Thr-Glu-Val-OH) of the Tax-1 10-mer seem to be essential for the binding.

> Tetramer bound PDZ domains crystals revealed a binding modality congruent with the hotspots observed by NMR.

PERSPECTIVES [VI]

Structural insights gained by X-ray crystallography and NMR could be utilized to find potential PPI inhibitors (small

molecules and peptides).

> When split in two parts, only the last four amino acids cause spectral changes

H-Glu-Thr-Glu-Val-OH is the essential part for the interaction.

ACKNOWLEDGEMENTS

We thank the Research Council of the VUB for financial support through the Strategic Research Programmes (SRP50 & SRP95), the Research Foundation Flanders (FWO) through FWO Hercules (OZR3939) and the Fund for Scientific Research (FNRS) for the financial support.

REFERENCES

(1) Suzuki, T.; Ohsugi, Y.; Uchida-Toita, M.; Akiyama, T.; Yoshida, M. *Oncogene.* **1999**, *18* (44), 5967-5972
(2) Maseko, S. B.; Brammerloo, Y.; Van Molle, I.; Sogues, A.; Martin, C.; Gorgulla, C.; Olivet, J.; Blavier, J.; Ntombela, T.; Delvigne, F.; Arthanari, H.; Salehi-Ashtiani, K.; Remaut, H.; Ballet, S.; Volkov, A., N.; Twizere, J. *Antiviral Research.* **2023**, *217*, 105675
(3) Songyang, Z.; Fanning, A., S.; Fu, C.; Xu, J.; Marfatia, S., M.; Chishti, A., H.; Crompton, A.; Chan, A., C.; Anderson, J., M.; Cantley, L., C. *Science.* **1997**, *275* (5296), 73-77