

https://doi.org/10.17952/37EPS.2024.P2064

Design and Structural Analysis of Fluorinated Polyproline-Type Foldamers and their **Ability to Interact with Membrane Models**

Chloé Cayrou,^{1,2} Simon Gonzalez,^{1,2} Astrid Walrant,³ Delphine Ravault,³ Karine Guitot,^{1,2} Sylvie Noinville,³ Françoise Illien,³ Sandrine Sagan,³ Thierry Brigaud,^{1,2} Olivier Lequin,³ Sandrine Ongeri,² Grégory Chaume^{1,2}

¹ BioCIS, CNRS, CY Cergy-Paris Université, 5 mail Gay-Lussac, 95000 Cergy-Pontoise, France; ² BioCIS, CNRS, Paris Saclay Université, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France; ³ Laboratoire des Biomolécules, Sorbonne Université, École normale supérieure, PSL University, CNRS, 4 place Jussieu, 75005 Paris, France

chloe.cayrou@cyu.fr

INTRODUCTION

Foldamers are oligomers with a strong tendency to fold into a well-defined secondary structure.¹ Among peptidic foldamers, oligomers of prolines are known to adopt a polyproline type II helix (PPII) in water where amide bonds are alltrans and a more compact helix (PPI) in organic solvent with all-cis amide bonds (<u>fig. 1</u>).

In this work, we report the incorporation of the trifluoromethyl pseudoproline $(CF_3\Psi Pro)$ into a polyproline backbone and the structural analysis of the resulting oligomers. Then, in order to increase the interaction with membranes, amphipathic oligomers are synthesized with the addition of a guanidyl group on prolines.

SYNTHESIS

FmocHN-

scale: 0.1 mmol

As the CF₃ group decreases the nucleophilicity of the amine, the coupling of the $CF_3 \Psi Pro$ is performed in solution to access the ready-to-use **building block** <u>1</u> for SPPS.³

The guanidylated proline <u>2</u> is synthesized as reported.⁴ Hydrophobic series

i. Fmoc cleavage: pip. (20% in DMF, v/v) ii. Coupling: DIC (2 or 5 eq), Oxyma (2 or 5 eq), Pro (5 eq), <u>1</u> (2.5 eq), <u>2</u> (3 eq)

Optional *iii*. *Acetylation*: Ac₂O (10 eq), DIPEA (10 eq) *iv. Cleavage*: TFA/TIS/H₂O (95:2.5:2.5)

Polyproline oligomers are obtained in good yield (MW activation is used for oligomers 3 and 5) (Oligomers 4 and 6 are TFA salt)

NMR ANALYSIS

- Determination of the rotamer populations (¹⁹F NMR).
- Full characterization of fluorinated oligomers (¹H, ¹³C and 2D NMR).
- Assignment of amide bond conformation (**NOESY and ROESY NMR**, fig. 2 and 3).

	n = 1	n = 2	n = 3
<u>3</u>	All- <i>trans</i>	All- <i>trans</i>	All- <i>trans</i>
	(>95%)	(>95%)	(>95%)
<u>4</u>	All- <i>trans</i>	All- <i>trans</i>	All- <i>trans</i>
	(>95%)	(>95%)	(>95%)

fig. 2: Amide bond ratio of synthetized fluorinated oligomers determined in D₂O at 20°C

fig. 3: Assignment of amide bonds with nOe effect

PPII CD SIGNATURE CONCEPT QUESTIONED FOR OLIGOMERS 3

Impact of the solvant on the CD signature

fig. 5: Impact of the n-propanol depending on the termini (100 μ M at 4°C); \rightarrow : isobestic point

all-*trans* amide bond conformation is strongly favored as expected for PPII helix

CIRCULAR DICHROISM (CD) ANALYSIS

fluorinated reference (100 μ M in PBS 20 mM (pH = 7.0) at 4°C)

CD spectra of fluorinated oligomers do not reveal typical PPII signature (absence of positive band at 226 nm)

By increasing *n*-propanol content, **PPI signature is observed** with charged termini (*N*-term: H, *C*-term: OH). Neutral termini (*N*-term: Ac, *C*-term: NH₂) are known to stabilize PPII helix.⁵ Moreover, the presence of isobestic points reveal that only two conformations are involved in this equilibrium: PPI \Rightarrow PPII.⁶

fig. 6: X-ray structure of 3c *(obtained in MeOH* with an accuracy of 0.04 Å for bond C-C, against the 0.01 Å expected)

X-ray structure of <u>3</u>c reveals a left handed helix with slightly distorted C₃ symmetry.

Conclusion

We have assembled a set of CD and X-ray diffraction data consistent with hydrophobic fluorinated oligomers 3 adopting a helical structure close to a PPII helix

INTERACTION WITH MEMBRANE MODELS MONITORED BY ¹⁹F NMR (LEFT) AND DSC (RIGHT)

fig. 7: Interaction with SDS micelles monitored by ¹⁹F NMR of <u>4b</u> with different concentration of SDS (foldamer as TFA salt at 200 μ M in H₂O/D₂O (90/10), *: above CMC, R = [SDS]/[foldamer])

fig. 8: Interaction of hexamers 4b and 6b with Multi-Lamellar Vesicles, MLV, of DPPG (anionic lipid) monitored by **DSC** (1 mg/mL MLV, F/L: molar ratio of foldamers on lipids)

DSC experiments reveal that **foldamers** <u>6b</u> and <u>4b</u>

disrupt MLV thermal transitions, with the decrease of the area under the curve, providing evidence of an interaction. A more significant effect of the fluorinated foldamer can be highlighted.

Foldamer 4b interacts with membrane models, SDS micelles and DPPG MLV

CONCLUSION

- X-ray crystallography, CD and NMR spectroscopies are consistent with <u>3</u> adopting a helical secondary structure close to PPII. The presence of the CF₃ group in δ position of the oxazolidine ring may cause steric clashes that can partially (or locally) disrupt PPII helix structure.
- Concerning the amphipathic series 4, more experiments have to be done to decipher the secondary structure, between **PPII helix** or **β-sheet**.
- The introduction of cationic groups on our fluorinated oligomers leads to foldamers able to interact with membrane models. Moreover, ¹⁹F NMR revealed to be a useful tool to investigate these interactions.

REFERENCES

- ¹: Gellman, S. H. Acc. Chem. Res. **1998**, 31, 173. ²: Moradi, M. et al. J. Chem. Phys. **2010**, 133, 125104. ³: Chaume, G. et al. J. Org. Chem. **2013**, 78, 10144. ⁴: Hruby, V. J., et al. J. Org. Chem. **2001**, 66, 1038. ⁵: Wennemers, H., *et al. J. Am. Soc.* **2009**, *131*, 15471.
- ⁶: Horng, J.-C., et al. Protein Science. **2009**, 18, 1967.

Acknowledgements

The CY Initiative of Excellence (grant « Investissement d'Avenir » INEX Initiative 2021 Biomol) is thanked for the financial support of Chloé Cayrou. Part of this work is also supported by the ANR FluFOLD N°ANR-22-CE44-0020-01.

