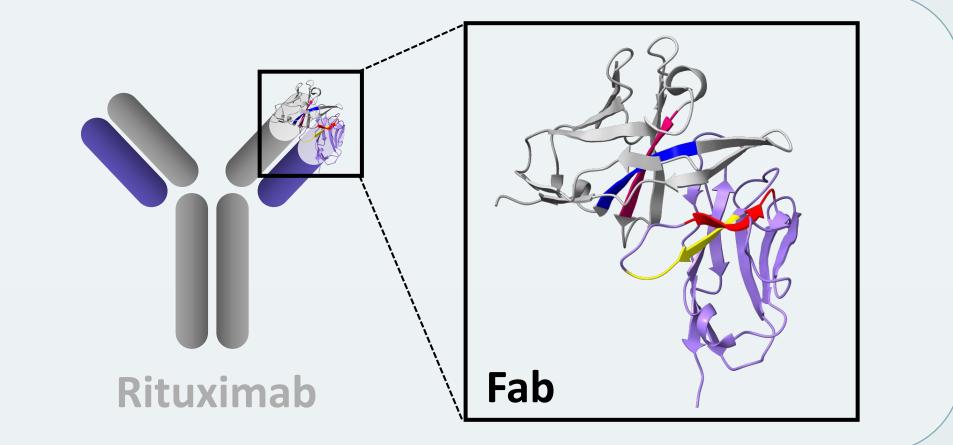


Cnrs

# Design and characterization of CD20 antigen surfaces for the selection of rituximab peptide mimics




Océane Ricloux<sup>1</sup>, Chanantida Jongwohan<sup>1</sup>, Jordan Cossu<sup>1</sup>, Liliane Guerente<sup>1</sup> and Didier Boturyn<sup>1</sup>

<sup>1</sup> University Grenoble-Alpes, CNRS, DCM UMR 5250, 38058 Grenoble Cedex 9, France

# Introduction

oceane.ricloux@univ-grenoble-alpes.fr; didier.boturyn@univ-grenoble-alpes.fr

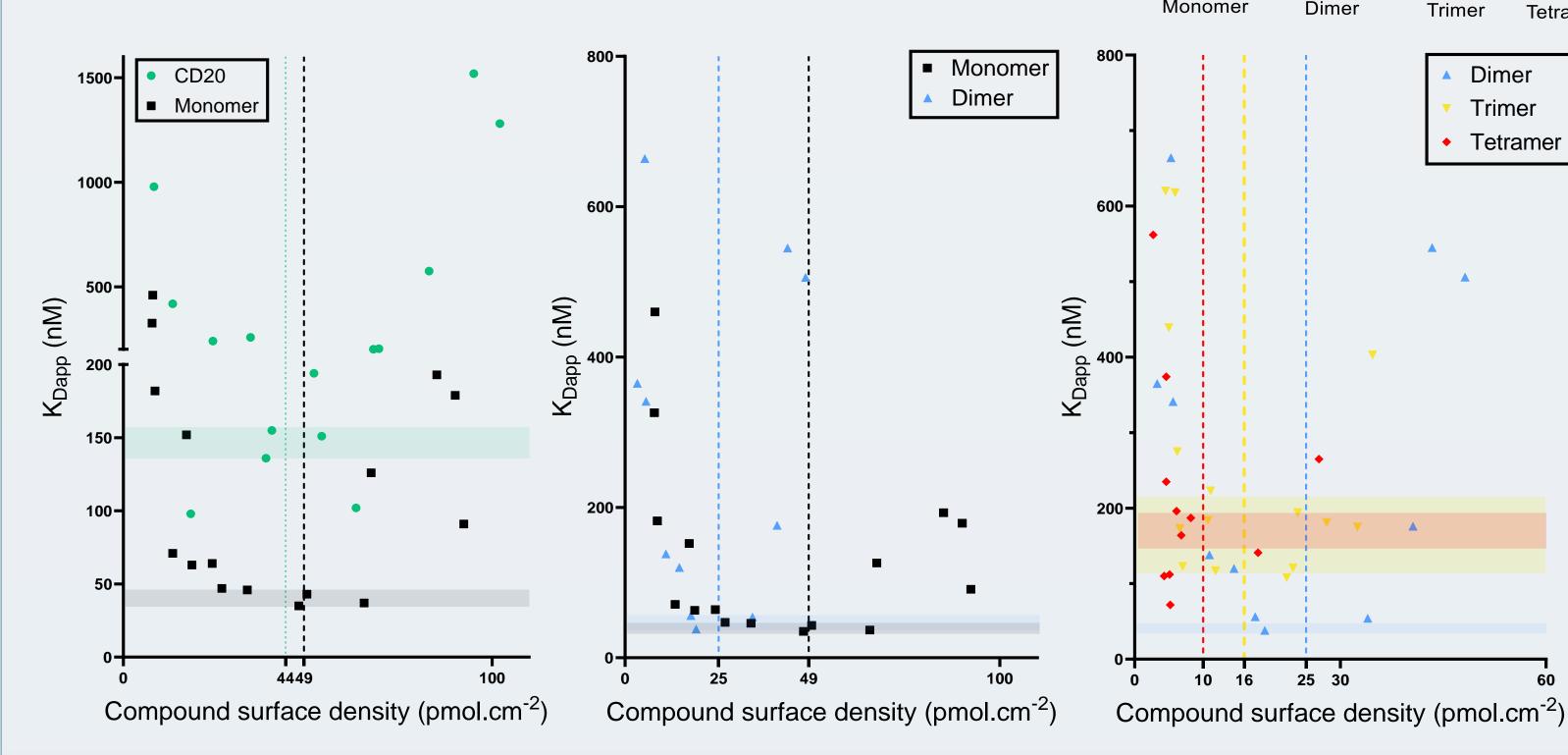
Since the 90s, **monoclonal antibodies** (mAb) have emerged as a promising class of pharmaceuticals and were successfully used for cancer therapy. However, several **limitations** related to the nature of mAbs such as their cost, their low tissue penetration and immunogenicity limits their extensive clinical use. So, **new technological solutions**, as small organic mAb mimics, have to be explored. In this context, we are interested in the **development of mAb mimics** that recognize the CD20 antigen, which is expressed on B cells and is a key target for several cancer and autoimmune diseases. In this context, the **mAb Rituximab (RTX) that target CD20**, is routinely used to treat some Lymphoma. Herein, we propose to **design macromolecular compounds comprising cyclopeptides selected from the RTX Fab as recognition elements for CD20** in combination with a detection element and/or a cytotoxic unit for therapeutic applications. For this pupose, we **developed and characterized biomimetic surfaces** to mimic the surface of B cells in order **to screen and select the RTX mimics** before moving on to cell-based assays.



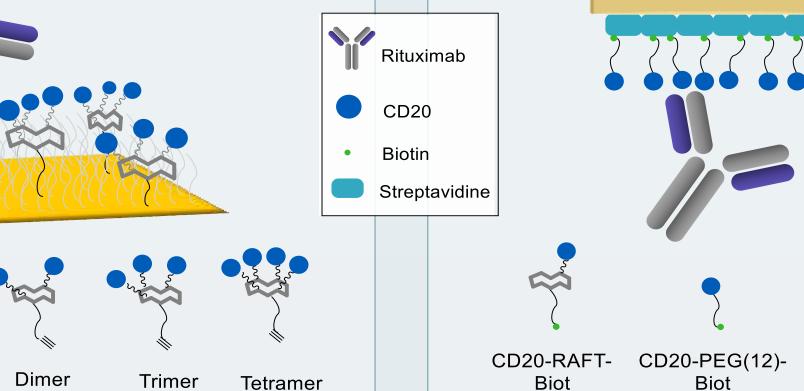
**Development of biosensors for BLI** 

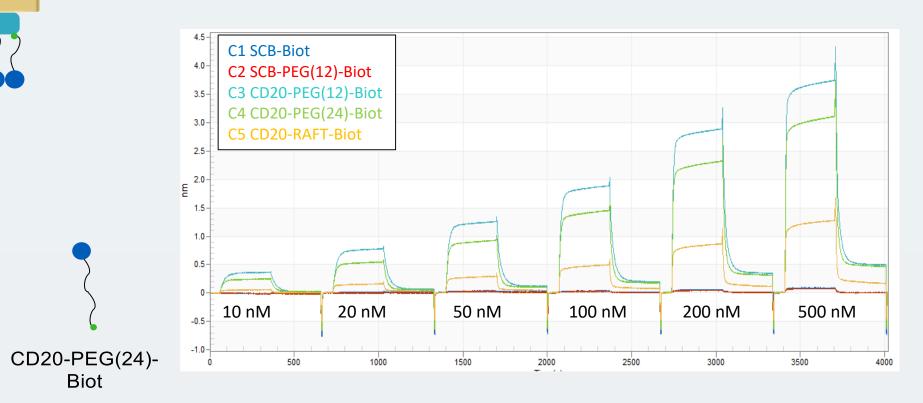
# Development of antigenic surfaces for SPR

 The biomimetic surfaces were characterize by Spectroscopic ellipsometry (SE) coupled with quartz microbalance (QCM-D) Grafting by CuAAC on a Self-Assembled Monolayer (SAM) of alcane thiols (N<sub>3</sub> or OH) Antigen density is controlled by the N<sub>3</sub>/OH ratio


## Grafting by Streptavidin/Biotin

interaction Antigen density is controlled by the time of grafting


 BioLayer Interferometry (BLI)
biosensors to screen RTX sequences to design the RTX mimics.


| Compound  | Surface density SE<br>(pmol.cm <sup>-2</sup> ) | Surface density QCM-D<br>(pmol.cm <sup>-2</sup> ) | Hydration<br>(%) |
|-----------|------------------------------------------------|---------------------------------------------------|------------------|
| Monomer * | 37 ± 1                                         | 32 ± 6                                            | 66 ± 5           |
| Dimer **  | 41 ± 4                                         | 32 ± 11                                           | 47 ± 13          |

**Characterization of CD20 surfaces by SE coupled to QCM-D.** SE areal densities were determined by *De Feijter* equation and QCM-D areal densities were extracted from *Sauerbrey* equation. \* n = 2, \*\* n = 3



Impact of epitope surface density and clustering on RTX/CD20 affinity in SPR. K<sub>Dapp</sub> were determined via the





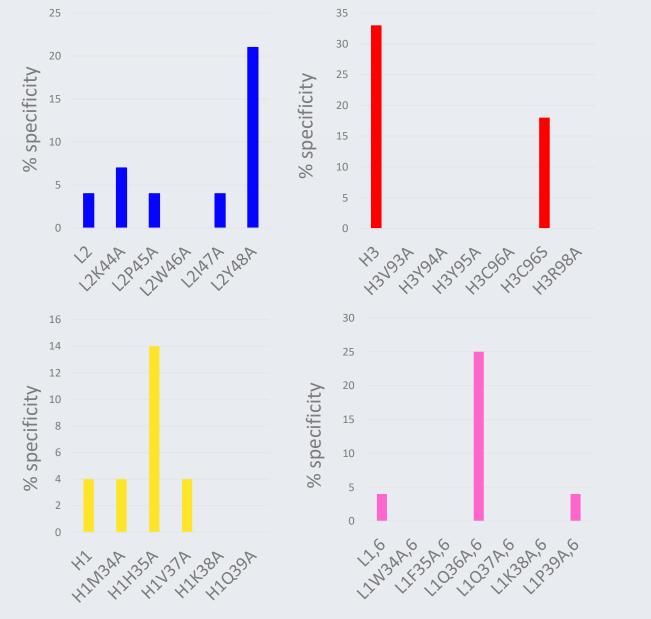
| Compound                                                                                       | Loading response max (nm)                                      | K <sub>Dapp</sub> (nM) |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|--|--|--|
| SCB-Biot                                                                                       | $0.8 \pm 0.1$                                                  | > mM                   |  |  |  |
| SCB-PEG(12)-Biot                                                                               | $1.3 \pm 0.1$                                                  | > mM                   |  |  |  |
| CD20-Biot                                                                                      | $1.1 \pm 0.1$                                                  | > mM                   |  |  |  |
| CD20-PEG(12)-Biot                                                                              | $1.5 \pm 0,1$                                                  | 250 ± 20               |  |  |  |
| CD20-PEG(24)-Biot                                                                              | $1.5 \pm 0.1$                                                  | 320 ± 10               |  |  |  |
| CD20-RAFT-Biot                                                                                 | $0.9 \pm 0.1$                                                  | 560 ± 20               |  |  |  |
| Impact of linker length on RTX/CD20 affinity in BLI. K <sub>Dapp</sub> were determined via the |                                                                |                        |  |  |  |
| Heteroge                                                                                       | Heterogeneous Ligand (HL) model by the $k_{off}/k_{on}$ ratio. |                        |  |  |  |

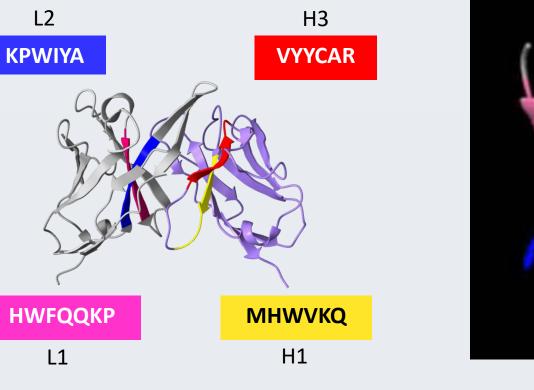
Design and Evaluation of RTX mimics

# **\* RTX** peptide mimic design

### **Two types of RTX mimics** :

**multivalent mimics** displaying 2 to 4 times the same cyclopeptide from RTX consensus sequence

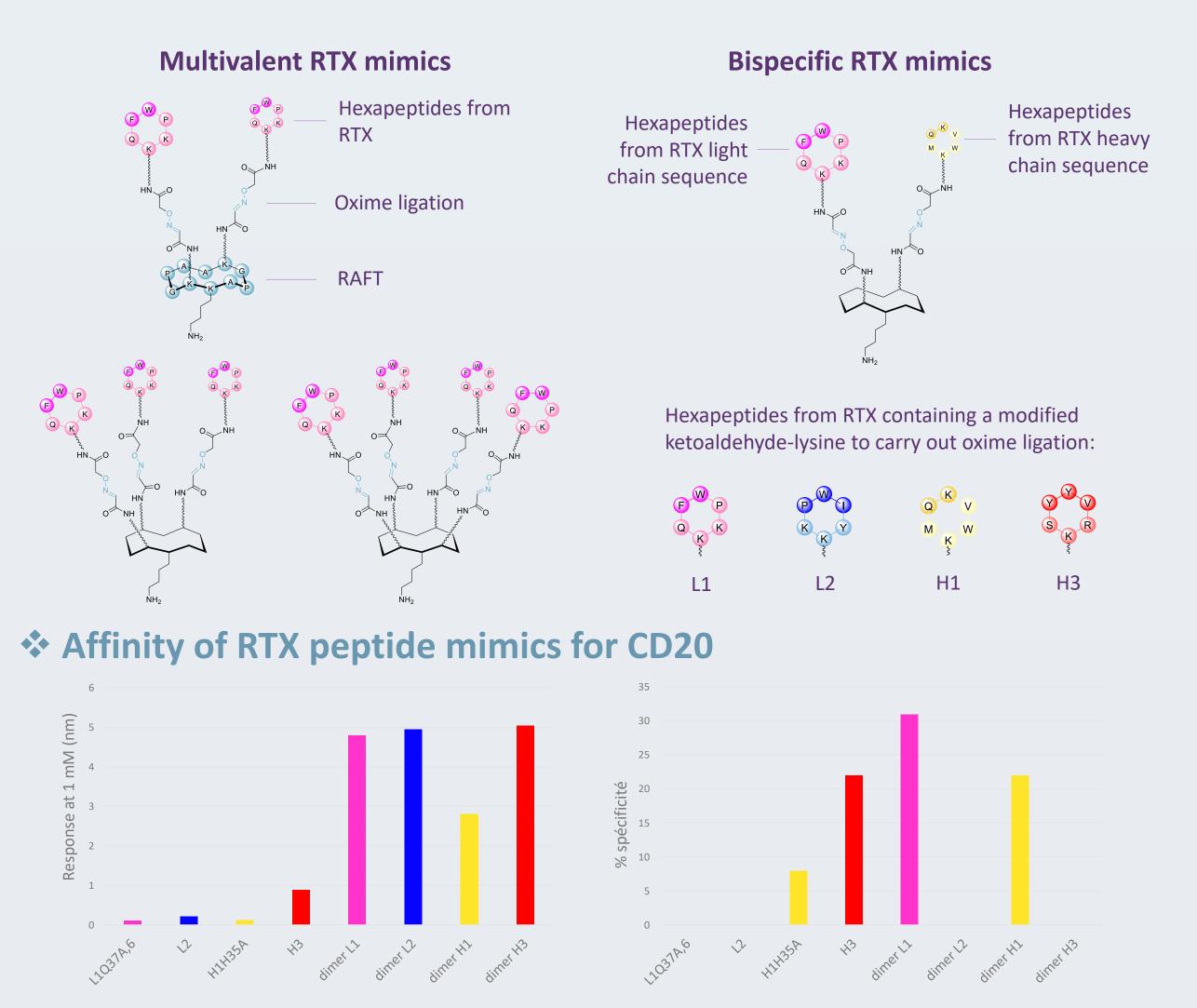

### Heterogeneous Ligand (HL) model by the k<sub>off</sub>/k<sub>on</sub> ratio and areal densities by *Jung*'s formula.


Affinity of rituximab against CD20 at optimal surface density in SPR.  $K_{Dapp}$  were determined via the Heterogeneous Ligand (HL) model by the  $k_{off}/k_{on}$  ratio and areal densities by Jung's formula. For the determination of inter-ligand distances, the projected surface of the compounds is considered circular. <sup>a</sup> n = 3, <sup>b</sup> n = 4

| Compound                                                                | Surface density<br>(pmol.cm <sup>-2</sup> ) | K <sub>Dapp</sub> *<br>(nM) | Inter-ligand<br>spacing (nm) |  |  |
|-------------------------------------------------------------------------|---------------------------------------------|-----------------------------|------------------------------|--|--|
| CD20 a                                                                  | 44 ± 8                                      | $147 \pm 10$                | $2.2 \pm 0.2$                |  |  |
| Monomer <sup>b</sup>                                                    | 49 ± 13                                     | 40 ± 5                      | $2.1 \pm 0.3$                |  |  |
| Dimer <sup>a</sup>                                                      | 25 ± 11                                     | 49 ± 10                     | $3.1 \pm 0.6$                |  |  |
| Trimer <sup>b</sup>                                                     | 16 ± 6                                      | 165 ± 50                    | $3.8 \pm 0.7$                |  |  |
| Tetramer <sup>b</sup>                                                   | 10 ± 6                                      | 172 ± 25                    | $5.0 \pm 1.1$                |  |  |
| * K <sub>D</sub> values <i>in vitro :</i> K <sub>Dapp</sub> ≈ 5 - 19 nM |                                             |                             |                              |  |  |

# Study of RTX/CD20 interaction

# **Amino acid significance of Rituximab-derived peptide sequences** *via Ala-scan*






Representation of the Rituximab's binding pocket

• Ala-scan to determine the RTX amino acids

**Bispecific mimics** displaying 2 different cyclopeptides, one from the heavy chain and one from the light chain sequences.



Ala-scan peptide specificity results obtained on the BLI model. The specificity percentage was determined by comparison with the "CD20scramble" response at a concentration of 1 μM.

- Design of BLI biosensors for peptide screening

Conclusion & Outlooks

- Design of antigenic surfaces with high specificity and affinity for its antibody

- Determination of the amino acids from RTX binding pocket involved in the interaction

involved in the RTX/CD20 interaction

Presence of a **binding pocket** in RTX with two interaction areas

Impact of dimerization of RTX cyclopeptides on CD20 recognition by BLI model. The specificity percentage was determined by comparison with the "CD20-scramble" response at a concentration of 1 mM.

- **Dimerization** induces an **increase in response**
- Dimerization can improve specificity for the target

# References

Bar, L.; Dejeu, J.; Lartia, R.; Bano, F.; Richter, R. P.; Coche-Guerente, L.; Boturyn, D. *Anal. Chem.* **2020**, *92*, 5396–5403.

Bar, L.; Nguyen, C.; Galibert, M.; Santos-Schneider, F.; Aldrian, G.; Dejeu, J.; Lartia, R.; Coche-Guerente, L.; Molina, F.; Boturyn, D. *Anal. Chem.* **2021**, *93*, 6865–6872.



- Design and synthesis of RTX mimics

Conclusion



EPS 2024, Florence, August 2024

**And now**?

Evaluation of the affinity and the specificity

of RTX mimics by BLI and SPR

Biological assays with the hits



