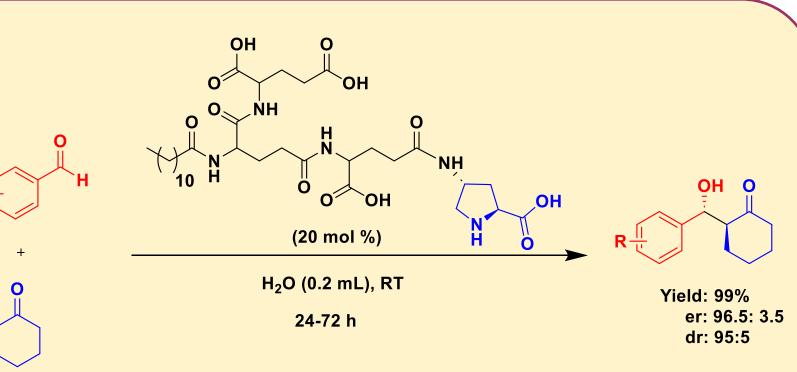
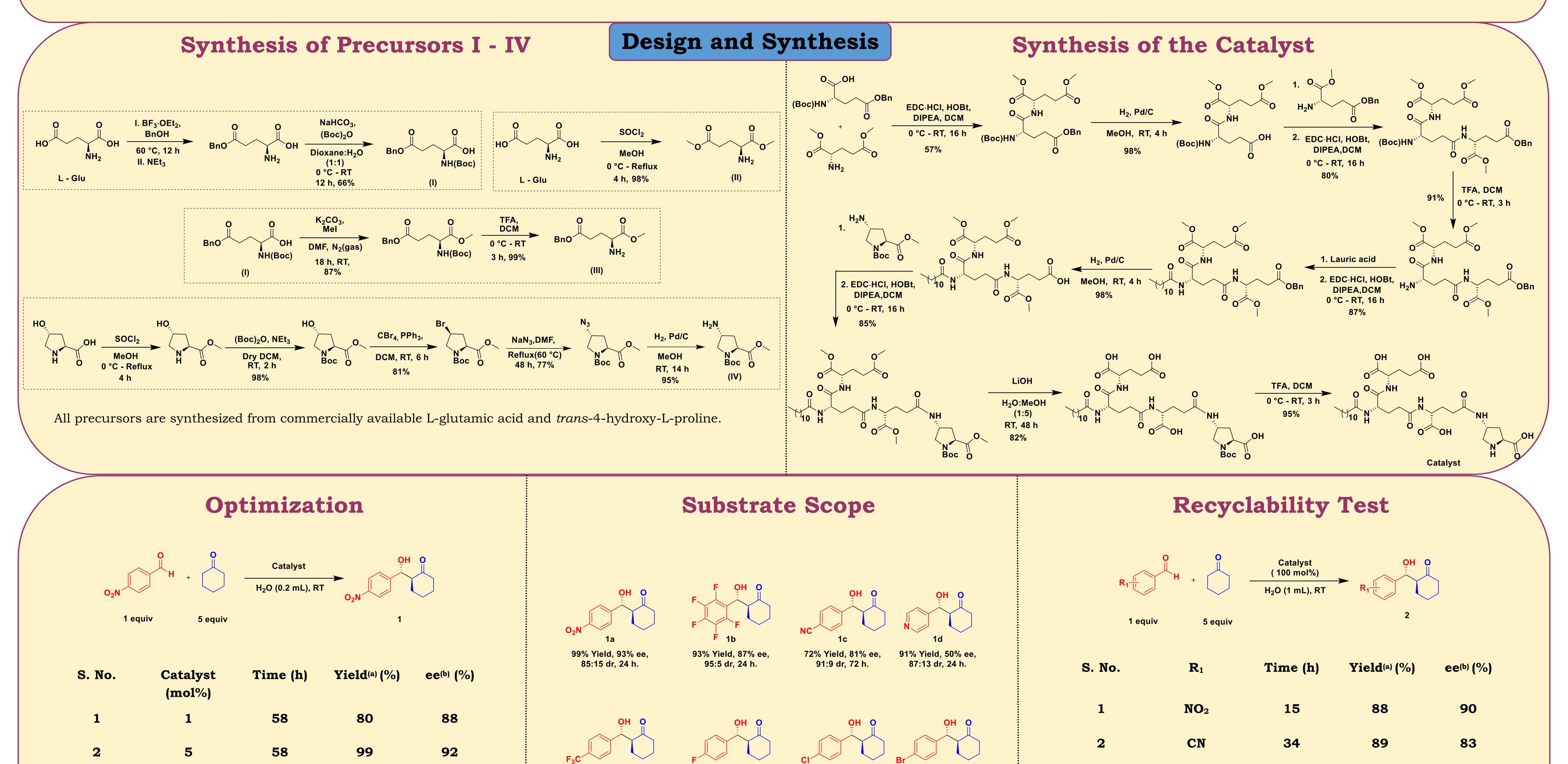
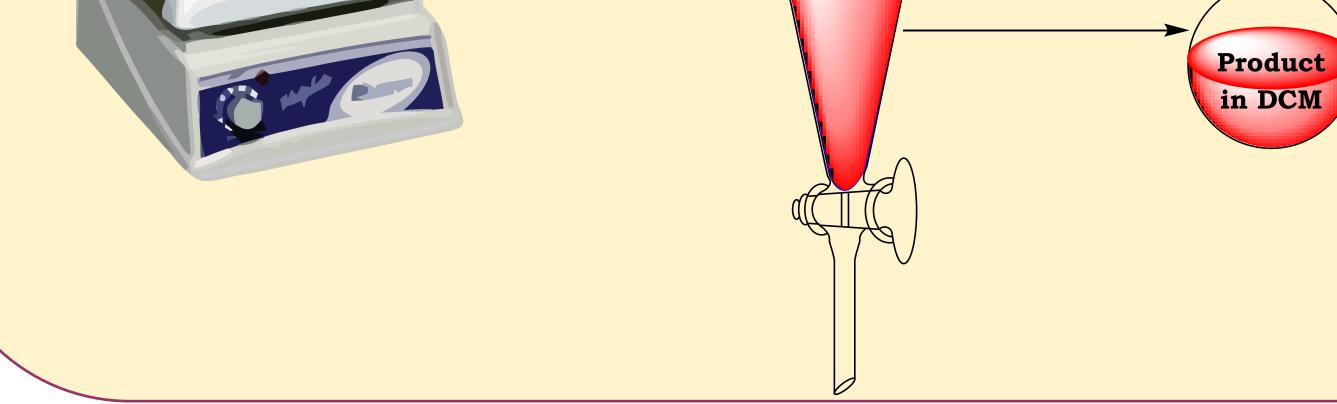

Organocatalytic Surfactants for Direct Asymmetric Aldol Reactions in Aqueous Media

Susanta Kumar Behera and Ramesh Ramapanicker*


Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India skbehera@iitk.ac.in



https://doi.org/10.17952/37EPS.2024.P1049


Abstract

We have developed a peptide surfactant (Pepfactant) based organocatalyst that bears a proline unit as an efficient organocatalyst for the reaction between aromatic aldehydes and cyclohexanone in aqueous media and at room temperature. Using a catalytic loading of 20 mol%, the aldol products were obtained in high yields (99%) and with excellent enantioselectivity (93%) and good diastereoselectivity (95:5). The aqueous solution containing the surfactant could be reused for reactions between four different sets of substrates one after the other without the loss of selectivity. This method provides a greener strategy for carrying out organocatalytic reactions in aqueous media.

3 4	10 20	30 24	98 99	91 93	1e 91% Yield, 90% ee, 92:8 dr, 72 h. Reactions were perfe		95:5 dr, 72 h. lyst (0.08 mmol), a		3 4	C ₆ F ₅ CF ₃	12 24	91 84	89 91	
(a) Isolated yield after column chromatography. (b) ee as determined by HPLC analysis using a Chiral AD-H Column. (0.4 mmol) and cyclohexanone (2 perature. Isolated yield after colum tio was determined by ¹ H NMR or HPLC analysis using different Chir							chromatography. l crude sample. ee	Diastereomeric ra- as determined by	ic ra- (a) Isolated yield after column chromatography. (b) ee as determined by HPLC ed by analysis using different Chiral AD-H, OD-H and AS-H Columns.					
Representation of Recyclability Repeated with the same or different substrates							Conclusion							
R H H Catalyst in						t in	 We have designed and synthesized a new water-soluble peptide surfactant (Pepfactant) that contains a proline unit as an organocatalyst. These reactions are performed exclusively in water without the use of any additive and at room temperature. 							
C	atalyst in H ₂ O		pletion of action	layer Organic layer				·····	References					

· Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew. Chemie - Int.

Ed. 2006, 45 (6), 958–961

. Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc.

2006, 128 (3), 734–735.

· Al-Momani, L.; Lataifeh, A. Ind. Eng. Chem. Res. 2022, 61 (6), 2417–2424.