

https://doi.org/10.17952/37EPS.2024.P2023

Propargylamine Amino Acids as Constrained *N*^{*ε*}**-Substituted Lysine Mimetics**

Kevin Van holsbeeck, Mathias Elsocht, Steven Ballet

Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium

Email: kevin.van.holsbeeck@vub.be

INTRODUCTION

Lysine (Lys) is an essential amino acid playing a crucial role in a plethora of biologically active proteins and peptides, due to its primary amine moiety connected to a hydrophobic alkyl side chain. Naturally, Lys undergoes various reversible post-translational modifications (e.g. methylations), which affect the functioning of proteins such as histones.^[1]

Therefore, *N*^ε-alkylated and constrained Lys derivatives (e.g. **1-8a-e**, **Figure 1**) have been developed for application in peptides targeting these proteins, such as peptide inhibitors of methylated lysine reader proteins.^[2] In this context, we developed an efficient synthetic pathway towards lysine analogues rigidified in their side chain by an internal alkyne functionality and decorated with various substituents at the *e*-amine (9).^[3] Solution syntheses of this type of lysine mimetics were only reported for aza-Lys-D-Phe dipeptides (Lubell Group) and racemic a-CF3 substituted propargylglycine (Osipov Group), both protected at their *N*- and *C*-termini.^[4,5]

Figure 1. Examples of reported constrained and alkylated lysine derivatives.

Application of the A³-reaction during SPPS

- Direct incorporation in peptides of 11a-q by Fmoc-based SPPS
- Diversification during SPPS assembly: pre-assembled 12
 - Purification not jeopardized by less efficient conversions
 - Higher conversions: DMSO, 50 mol% Cul and extended reaction times

Diversification of the internal alkyne towards 1,2,3-triazoles

- Internal alkyne moiety: further functionalization via ruthenium-catalyzed azide-alkyne cycloadditions (RuAAC)
- Ester protection needed

Code	HNR ¹ R ² used for A ³ -coupling	Amount of	Amount of
		14a-r (%) ^[c]	15 (%) ^[c]
14a	Dimethylamine	71	23
14b	Diethylamine	n.d. ^d	n.d. ^d
14c	Di <i>iso</i> propylamine	91	1
14d	Dipropylamine	89	4
14e	Diallylamine	70	25
14f	Bis(2-methoxyethyl)amine	57	25
14g ^[a]	Piperidine	84	10
14h ^[a]	Morpholine	52	43
14i	N-Methylcyclohexylamine	90	4
14j	N-Methyl(tetrahydro-2H-pyran-4-yl)methanamine	89	5
14k	N-Methyl-N-(thien-2-yl-methyl)amine	66	26
14 	N-Methylbenzylamine	78	13
14m	4-Methoxy-N-methyl-benzylamine	83	10
14n	4-Fluoro-N-methyl-benzylamine	82	12
14o	N-Allylbenzylamine	62	34
14p ^[a]	Dibenzylamine	65	30
14q ^[b]	Tert-butyl sarcosinate hydrochloride	56	24

^[a] Performed for 4h. ^[b] Additional DIPEA (3.0 equiv) and Cul (1.5 equiv). ^[c] Determined by analytical HPLC of the crude peptides. ^[d] Not determined due to overlap.

Mixture of two regioisomers: assigned by NMR through ¹H-¹³C HMBC

CONCLUSION & PERSPECTIVES

- Efficient pathway toward N^{ε} -alkylated propargylamine amino acids as lysine mimetics
- Synthetic accesibility by A³-reaction on Fmoc-protected building blocks and during solid phase assembly
- Additional functionalization of internal alkyne by the RuAAC towards 1,2,3-triazoles
- **Diversification of azide substitutent:** additional linkage point for peptide cyclizations or late-stage functionalization

REFERENCES

[1] Wang, Z.; Cole, P. Cell Chem. Biol. 2020, 27, 953-969. [2] Lamb, K.; Bsteh, D. et al. Cell Chem. Biol. 2019, 26, 1365-1379. [3] Van holsbeeck, K.; Elsocht, M.; Ballet, S. Org. Lett. 2023, 25, 130-133. [4] Zhang, J.; Proulx, C. et al. Org. Lett. 2013, 16 (1), 298-301. [5] Philippova, A. N.; Vorobyeva, D. et al. Mendeleev Commun. 2022, 32 (2), 260-261.

 R^2

ACKNOWLEDGEMENTS

K.V.h. and S.B thank the Research Foundation Flanders (FWO Vlaanderen) for providing a PhD fellowship to K.V.h. S.B. thanks the Research Council of the Vrije Universiteit Brussel for financial support through the Strategic Research Programme (SRP50). Giulia Atza is acknowledged for performing preliminary work.