

https://doi.org/10.17952/37EPS.2024.P2314

Self-assembly of histidine-containing peptides and applications

<u>C.P Apostolidou^{1,2}</u>, Chrysoula Kokotidou^{1,2}, Varvara Platania^{1,2}, Vasilis Nikolaou^{1,3}, Georgios Landrou^{1,3}, Emmanouil Nikoloudakis^{1,3}, Georgios Charalambidis^{1,3}, Maria Chatzinikolaidou^{1,2}, Athanassios G. Coutsolelos^{1,3}, A. Mitraki^{1,2}.

¹ Department of Materials Science and Technology, University of Crete,

² Institute for Electronic Structure and Laser, IESL-FORTH, Vassilika Vouton, 71003 Heraklion, Crete, Greece

³ Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry

*chrysana@materials.uoc.gr

Abstract

Self-assembling peptides consist of short chains of amino acids capable of spontaneously forming higher-order structures such as fibers, tubes, and hydrogels [1]. Among these, histidine peptides are widely studied since histidine is an essential amino acid with a unique property. Its imidazole side chain exhibits pH sensitivity, allowing histidine peptides to undergo conformational changes and self-assemble into supramolecular structures in response to environmental factors like pH or salinity. Such versatility holds promise for pharmaceutical applications. Expanding on prior research [2,3], recent studies have focused on evaluating the effectiveness of coordinating histidine-containing peptides with copper and zinc to produce Zn and Cu nanoparticles. Through studying the morphology of these His-peptide NPs (**Cyclo-(His-Phe**), cHF NPs) using techniques such as FESEM, TEM, and FTIR, our ultimate goal is to evaluate the **antimicrobial properties** of the synthesized materials against selected Gram-positive and Gram-negative bacterial strains, as well as their potential as **anticancer metal-based drugs and antibiotics**. Preliminary experiments have shown promising results in both directions, underscoring the versatility of these nanostructures in biomedical applications.

Structural Characterization of the peptide

Figure 1: Cyclo-(His-Phe) (cHF) at the concentration of 1 mg/mL in PBS 1X under

Evaluation of the antimicrobial potency of cHF-CuNPs and cHF-ZnNPs

The cHF-CuNPs and cHF-ZnNPs were prepared with different metal concentrations. Then, all the prepared samples were tested for their antimicrobial efficiency against *E. coli* and *S. aureus*.

A) Field-emission SEM **B)** TEM microscope.

Preparation of cHF-CuNPs and cHF- ZnNPs

Figure 3: The graph depicts bacterial growth expressed as colony forming unit per mL (CFU/mL) of *E. coli* and *S. aureus* after 24 hours **A)** cHF-CuNPs and **B)** cHF-ZnNPs.

S. aureus

Figure 4: Cytotoxicity assessment at 24 and 48 hours on L929 fibroblast cell line. cHF NPs exhibit high cytocompatibility at lower metal concentrations.

E. col

S. aureus

Evaluation of the cytotoxicity of cHF-CuNPs and cHF-ZnNPs under different pH on MG-63 osteosarcoma cell line

Figure 2: A) Schematic representation of the preparation of cHF-NPs
B) FTIR analysis of cHF-ZnNPs at different metal concentrations
C, D) Field-emission SEM images of cHF-ZnNPs (initial metal concentration was 1mM).

Conclusions

•Cyclic-(His-Phe) can spontaneously self-assemble into amyloid fibrils

Figure 5: Cell viability in the presence of cHF-NPs after 24 h at **pH 6.4** and **pH 7.4** was studied by MTT test.

•Cyclic-(His-Phe) can coordinate successfully with metal ions, zinc, and copper, due to the presence of histidine residue (FESEM and FTIR), and form peptide-metal NPs.
•Antimicrobial potency: The cHF–CuNPs (1 mM) showed limited cytotoxicity on L929 cells and strong antimicrobial effects against *E.coli* and *St. aureus*.
•Anticancer potency: The cHF-ZnNPs showed strong cytotoxicity against the MG-63 osteosarcoma cell line.

References

[1] G. Fichman, E. Gazit, Acta Biomater, 2014, 10, (4), 1671–1682.
[2] E. Glymenaki, et. al., ACS Omega, 2022, 7, (2), 1803–1818.
[3] C.P. Apostolidou, et. al., Biomolecules, 2024, 14, (2), 226.

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

