
     Advances in synthetic chemistry have greatly increased 
the number of amino acid and amino acid-like monomers 
that can be incorporated into a synthetic heteropolymer, cre-
ating exciting opportunities for the rational design of peptide 
and peptide-like drugs, nanomaterials, and catalysts. In 
recent years, we have worked to generalize the Rosetta 
software suite to permit its application to the design of syn-
thetic peptides and heteropolymers built from non-canonical 
amino acids and other artificial building-blocks, and to allow 
validation of designs by simulation of molecules’ folding 
properties and propensities [1–7].  Examples of synthetic 
peptides designed with our pipeline and validated by X-ray 
crystallography or NMR spectroscopy are shown in Fig. 1.
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     Historically, the Rosetta software (used for macromolecular design and structure prediction) has 
been limited by its reliance on classical force fields, which are of limited accuracy and which are di�-
cult to extend to support synthetic chemical building-blocks.  Quantum mechanics-based (QM) calcu-
lations permit far greater accuracy and generality, albeit at greater computational cost depending on 
the level of approximation used to solve the multi-body Schrödinger equation.  Historically, these 
have been laborious to set up, however.  We have developed the RosettaQM communications bridge 
to allow Rosetta to communicate with GAMESS, Orca, or other quantum chemistry software, permit-
ting QM energy calculations in the context of any Rosetta protocol.  Fig. 2A illustrates how a user 
may use low-cost, low-accuracy force fields, medium-cost, medium accuracy semi-empirical meth-
ods, and high-cost, high-accuracy DFT calculations in the context of a single protocol, reserving the 
more expensive calculations for samples that pass intermediate filters.  Fig. 2B shows RosettaQM 
features that facilitate its application to large peptides and proteins, including fragment molecular or-
bital (FMO) calculations that use a “divide and conquer” approach to get around the scaling of full 
DFT calculations, as well as the RosettaQM MultiScoreFunction, which allows di�erent levels of QM 
theory to be applied to di�erent regions of a structure.

     We demonstrate some of RosettaQM’s many applications by showing the computation of main-
chain potentials (Ramachandran maps) for di�erent canonical and non-canonical amino acids (Fig. 
2C).  Precomputed lookup tables for the mainchain potential are essential for the force fields used in 
peptide design and validation, so this provides facile means of generating these for new non-canoni-
cal amino acids [8].  In addition, RosettaQM permits QM-based energy calculations in the context of 
existing protocols, including peptide conformational sampling and structure prediction protocols.  Fig. 
2D shows how even approximate semi-empirical methods, such as DFTB, o�er accuracy and general-
ity well beyond those of force fields, permitting the accurate prediction of the folded structure of cyc-
losporine A in organic solvent for the first time.  RosettaQM also generalizes well to more exotic 
chemical building blocks.  We are currently applying it to the design and validation of peptoid poly-
mers (N-functionalized poly-glycine) with secondary and tertiary folds (Fig. 2E).

Figure 1:  Synthetic peptides designed using the Rosetta software suite.  (A) A 7-residue cyclic 
peptide, made from a mixture of D- and L-amino acids, that folds into a rigid, designed fold 
[2,4,7]. (B) A 26-residue cyclic peptide made from D- and L-amino acids that folds into a tertiary 
fold with helices of opposite handedness packing against each other, a fold impossible for any 
natural protein made from canonical amino acids alone [1]. (C) A 60-residue cyclic polypeptide 
with a fold stabilized by 1,3,5-tris(bromomethyl) benzene that serves both as a covalent 
three-way crosslink and as a component of a small hydrophobic core [3].  (D) An 8-residue cyclic 
peptide inhibitor (pink) of the New Delhi metallo-β-lactamase 1 (blue), an enzyme involved in 
antibiotic resistance.  This peptide, also built from a mixture of D- and L-amino acids, folds rigid-
ly into its binding-competent conformation, largely eliminating the entropic cost associated 
with ordering a disordered peptide on binding to a target [5].

Conclusions
     Robust computational peptide design faces challenges of 
accuracy, generality, and tractability.  By introducing quan-
tum mechanical energy calculations into design and valida-
tion pipelines through the RosettaQM bridge, we have ad-
dressed the major sources of inaccuracy in energy calcula-
tions, and have greatly improved our ability to generalize the 
methods to new chemical building-blocks.  By mapping 
design problems to quantum annealers and gate-based 
quantum computers, we have met tractability challenges 
head-on, and opened the door to tackling design problems 
involving far more candidate building-blocks as quantum 
computers improve.
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Collaboration Opportunity
 The Biomolecular Design Group seeks collaborators inter-
ested in working together to develop macromolecules for 
binding to targets of therapeutic interest, for functional nano-
material applications, or for catalysis of reactions of interest. 
In particular, we seek experimental collaborators interested 
in recombinant expression of proteins, chemical synthesis of 
peptides, peptoids, or other heteropolymers, or experimen-
tal screening of designed macromolecules in in vitro or in 
vivo assays.  Please contact vmulligan@flatironinstitute.org if 
you are interested.

     However, this chemical diversity creates two challenges 
for rational design.  First, force field-based design methods 
generalize poorly, and must be reparameterized as new 
chemical building blocks are added.  More exotic build-
ing-blocks often have few experimental data available for 
empirically calibrating force fields.  Second, the expansion in 
the number of possible building blocks vastly increases the 
number of combinatorial possibilities, creating an intractably 
large search space for computational optimization-based 
design approaches.  Here, we describe recent work to ad-
dress both of these challenges.  To achieve greater accuracy 
and generality, we have developed RosettaQM, a set of 
software tools allowing quantum chemistry calculations to 
be incorporated into any existing Rosetta protocol.  To tackle 
the combinatorial problem, we have developed a new 
open-source software library that extends Rosetta or other 
peptide modelling packages, which we call Masala.  Masala 
provides diverse high-e�ciency solvers for combinatorial op-
timization problems like the sequence design problem. 
Beyond traditional Monte Carlo based solvers for classical 
computing hardware, we have mapped these problems to 
current-generation quantum annealers and gate-based quan-
tum computers, which may o�er scaling advantages as the 
combinatorial space continues to balloon.  We believe that 
these computational tools will be an important complement 
to experimental screening and other approaches.

Figure 2:  Quantum mechanics-based (QM) energy calculations in peptide design and validation pipelines using RosettaQM.  (A) Existing design and val-
idation pipelines enhanced with RosettaQM.  While force fields can continue to be used for steps that must be fast, where accuracy is of finite impor-
tance, semi-empirical calculations or full DFT calculations can be performed at later stages.  RosettaQM permits a QM calculation to be configured from 
within Rosetta, sent to GAMESS or Orca, executed, and the result imported into Rosetta, all without user intervention.  (B) Modes of operation of Roset-
taQM.  Left: a basic RosettaQM calculation treats a molecular structure as a quantum-mechanical system.  Middle: the RosettaQM “MultiScoreFunc-
tion” permits regions of a structure to be scored with force fields or with di�erent levels of QM theory, using mechanical or electrostatic embedding 
schemes.  Right: RosettaQM supports fragment molecular orbital (FMO) calculations in GAMESS [12], in which separate QM calculations performed on 
individual amino acids or on pairs of interacting amino acids are combined to produce an estimate of the overall energy of the system.  (C) Computation 
of Ramachandran potentials with RosettaQM (using the 6-311++G** level of theory and MP2).  Left: Ramachandran potentials for alanine, proline, and 
valine, plus non-canonical amino acid 2-aminoisobutyric acid and peptoid monomer (S)-N-(1-phenylethyl)-glycine.  Right: Correlation between computed 
and experimentally-determined helical propensity of amino acids [11].  (D) Prediction of the folded state of cyclosporine A in organic solvent.  Left: over-
lay of prediction using Rosetta ref2015 energy function (magenta) on the X-ray crystal structure (green).  The predicted structure has no resemblance 
to the reality.  Right: overlay of prediction using RosettaQM DFTB semi-empirical method (cyan) on the X-ray crystal structure (green), showing excellent 
agreement.  (E) Designed peptoid helical bundle fold using RosettaQM for validation.  Polar groups are shown in cyan, and apolar groups in orange. 
Work to make peptoids that fold into intricate tertiary folds as proteins do is ongoing.

Mapping the Sequence Design Problem to Quantum Computers
     Given D possible synthetic building blocks in an N-residue peptide, how is one to choose which 
of the DN possible sequences to synthesize?  Even supercomputers cannot exhaustively enumerate 
possible sequences as D or N grow large.  Historically, Rosetta has used simulated annealing as a 
heuristic for finding good sequences likely to produce a desired fold and function, at the expense of 
any guarantees of finding the best.  However, Rosetta’s simulated annealer lacks support for modern 
hardware (multi-core CPUs, GPUs), extensibility (support for alternative search algorithms), or versa-
tility (support for optimization problems other than sequence design).  We have built the Masala soft-
ware library as an extension library against which software like Rosetta can be linked.  Masala has 
versatile plug-in architecture, allowing easy development of plug-in Masala optimizers that can be de-
tected at runtime and used by Rosetta without recompilation.  Fig. 3A shows Rosetta’s interaction 
with Masala’s solvers.  The sequence design problem is separable into a energy calculation step, in 
which the energies of candidate rotamers (amino acid identities with fixed side-chain conformations) 
and pairs of rotamers are pre-computed and stored, and a combinatorial optimization step, in which 
the precomputed one- and two-body energies are used to try to find a selection of one rotamer per 
position that minimizes energy.  The first step can be performed by Rosetta, and the second by a 
general-purpose solver provided by Masala.

     Quantum computers o�er a possible means of surmounting the scaling obstacles of di�cult com-
binatorial optimization problems.  We have implemented solvers in Masala that allow Rosetta design 
using quantum computers.  Our initial implementation (described in [9]) used an exact one-hot encod-
ing of rotamer selections, requiring ND qubits to represent D rotamers at N positions (Fig. 3B).  As a 
proof of principle, we used this to design a self-assembling mixed-chirality peptide helical bundle on 
the D-Wave quantum annealer, which we synthesized by solid-phase methods and validated by x-ray 
crystallography (Fig. 3C).  However, this required more qubits than were available on the then-cur-
rent D-Wave 2000Q quantum annealer, so that it was necessary to use a hybrid classical-quantum al-
gorithm called QBSolv to divide the problem into pieces that could be solved on the annealer.  We 
subsequently developed an approximate binary encoding (Fig. 3D) that compresses the problem to 
use N log2(D) qubits at the expense of some accuracy in energy values.  This has permitted the direct 
design of much larger polypeptides (e.g. Fig. 3E) entirely on the QPU.  We have also explored a map-
ping to gate-based quantum computers using the QAOA algorithm for optimization (Fig. 3F).  On cur-
rent devices, such as systems built by IBM or IonQ, this allows only very small rotamer optimization 
problems to be solved; nevertheless, it is able to rapidly find lowest-energy solutions (Fig. 3G).  Since 
we have previously shown that the multibody docking problem, another NP-hard problem, maps to 
the same functional form [10], we anticipate that these solvers will be broadly useful.

Figure 3:  Implementing support for external combinatorial optimizers, including quantum optimizers, for use in Rosetta protocols.  (A) Schematic of Ro-
setta’s communication with the Masala libraries.  Rosetta precomputes one- and two-body energies for rotamer optimization or related problems, then 
sends the problem description to Masala expressed as a generic cost function network optimization (CFN) problem.  Masala’s core detects available 
plug-in optimizer (CPU, GPU, or QPU-based) at runtime, sends the CFN problem to a user-selected optimizer.  The CFN solution is transmitted back to 
Rosetta and converted to a rotamer optimization solution.  (B) Mapping of the rotamer optimization problem to the quantum annealer, using ND qubits 
to represent D candidate rotamers at each of N possible positions.  Final solutions are expressed as a bitstring with one-hot encoding of selected rotam-
ers [9,10].  (C) A self-assembling heterochiral helical bundle peptide designed on the quantum annealer using the hybrid classical-quantum QBSolv algo-
rithm.  The design (cyan) is shown superimposed on the X-ray crystal structure (orange).  (D) An approximate binary encoding of the rotamer optimization 
problem for the quantum annealer, using N log2(D) qubits.  This encoding uses far fewer qubits, but introduces some error in states’ scores.  (E) A 
well-packed protein core (cyan) designed entirely on the quantum annealer with the approximate binary encoding.  (F) Mapping of the rotamer optimiza-
tion problem to a gate-based quantum computer, using the quantum approximate optimization algorithm (QAOA).  (G) A small rotamer optimization prob-
lem solved on the IonQ quantum computer.  Left: three side-chains in the core of the Top7 protein were optimized with 7, 2, and 2 rotamers (28 total 
combinations).  Right: with repeated sampling, the lowest-energy solution was found most frequently and showed considerable enrichment.
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