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Introduction 
From the repertoire of targets, enzymes interacting with peptide substrates constitutes one of the most 
interesting groups to block due to their impact as key drivers in many biological processes. Information 
about natural substrates as well as potential inhibitors has contributed to understand the specificity of 
these enzymes, and the mechanisms to recognize certain molecular binders, as in the case of proteases 
[1]. Many of these proteases have been identified in pathogens, or as crucial molecular components in 
the modulation of human diseases [2]. For example, structures of proteases have been characterized 
and used to design novel inhibitors of emerging viruses [3]. This is the case of the 3CL protease or 
main protease (Mpro) characterized for SARS-CoV-2 that since its report has motivated the 
publication of various studies aiming to understand its mechanism of action and screening of potential 
inhibitors [4,5]. Another example is cathepsin S, a protease involved in the human immunological 
response pathway. The overexpression of this protease is associated with some autoimmune diseases, 
motivating the characterization of its structure to provide new clues for designing novel binders able 
to control their deleterious effects [6]. 

Thanks to the availability of these protease structures, researchers have applied different 
computational strategies to design novel inhibitors, some of them mimicking the mechanism of action 
of their natural substrates [7]. This is the case of modified peptides composed of non-natural amino 
acids (NNAA), which can be associated with improved pharmaceutical properties [8,9]. These NNAAs 
can be computationally parameterized and included in common simulation and modelling techniques 
[10]. This provides valuable resources to support the engineering and design of modified peptides 
through computational strategies, allowing, for example, the design of novel inhibitors against 
proteases responsible to cleave natural peptides [11]. 

Something crucial is to employ computational strategies to explore efficiently both the 
conformational and sequence space of the peptides. In the case of the sampling techniques, there are 
multiple alternatives from classic to enhanced molecular dynamics simulations [12]. These trajectories 
can be used to score protein-peptide complexes and allow the modification of their sequences based 
on accepting random or guided modifications [13,14,15]. Something required is the definition of a 
molecular target structure bound to a peptide, which can be obtained from either a crystal structure or 
through docking methodologies. These targets are usually proteins that can be inhibited using peptides 
as potential drug-like molecules. In this work, we applied the design protocol PARCE [16] using 
crystal structures of two proteases of relevance, a cathepsin S and SARS-CoV-2 main protease docked 
with 3-mer modified peptides as starting points. The selected candidates were ranked and proposed as 
potential inhibitor candidates for further experimental validations. 

Results and Discussion 
In this work we generated a protocol to design modified peptides composed of non-natural α-L-amino 
acids and some basic D-amino acids. Using as input a protein-peptide complex, several mutations were 
attempted with a set of parameterized NNAAs. The mutations are sampled with RosettaCommons 
(https://www.rosettacommons.org/), and a consensus scoring or metropolis Monte Carlo criterion can 
be applied to accept or reject the mutations. An application using two known protease systems was 
included to design novel 3-mer modified peptides.  

Parameterization of non-natural amino acids 
Based on the information of α-L- and D-NNAAs derived from the SwissSideChain database [17], a 
total of 83 NNAAs were selected to perform the mutations. All the NNAAs contain chemical 
modifications only on the side chain, and they can be sampled using molecular dynamics (MD) 
simulations with the CHARMM27 force field available in SwissSideChain. 
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Application using proteases structures 
We selected two proteases’ structures from the PDB that has been co-crystallized with 3-mer modified 
peptides. One is the SARS-CoV-2 Mpro structure (PDB id 6fv2) [18], and the second is a cathepsin S 
structure (PDB id 2f1g) [19]. In both cases, the bound peptides are composed of NNAAs that are not 
part of the parameterized NNAA dataset. Based on that, we modelled a group of 3-mer peptides using 
combinations from a set of 14 NNAAs available in RDKit (https://rdkit.org/) to run conformer 
predictions. The conformer library was docked using AutoDock Vina [20], and the bound peptides 
with the best energies were used as starting points for the design of modifications. In the case of Mpro, 
the sequence was DGN (D-glutamine), ORN (ornithine) and DME (D-methionine). For cathepsin S, 
the 3-mer was DAR (D-arginine), ORN (ornithine) and DPR (D-proline). A graphical representation 
of the structures and the docked poses are shown in Figure 1. 

Both complexes were used as references to design variants with higher affinities. For the design, 
we initially attempted a run using a single scoring function with a Metropolis Monte Carlo criterion to 
accept the mutations. A total of 400 mutations were attempted, and the score evolution was monitored 
to identify the accepted candidate sequences. We found a high number of accepted sequences (85) 

from the 400 iterations (see Figure 2). However, relying in one single scoring function can be risky 
given the intrinsically errors associated [21]. Because of that, the next step was to run the design with 
a consensus setup, using two thresholds of three and four scoring functions to accept the mutations 
from the original six. 

After running the design with a threshold of three and 200 mutation attempts, we found more 
difficulties to converge the scoring functions after the planned number of iterations. This is mostly 
given by the small size of the peptide sequences, which can change drastically the average scores from 
one iteration to the next. For example, we obtained for the Mpro system a total of 20 candidates, but 
with a noticeable lack of convergence. For the cathepsin S, the results were similar with a total of 34 
accepted molecules. To avoid these issues, we increased the threshold from three to four scoring 
functions to accept the mutations. In that scenario, a lower number of sequences were accepted, but 
we got a better performance of the scoring functions during the iterations. An example with four of the 

Fig. 1. Structures of the two proteases that were included for the application. (A) Structure of a 
SARS-CoV-2 Mpro structure (PDB id 6fv2) bound to the starting 3-mer peptide DGN (D-glutamine), 
ORN (ornithine) and DME (D-methionine. (B) Structure of the cathepsin S structure (PDB id 2f1g) 
bound to the 3-mer peptide DAR (D-arginine), ORN (ornithine) and DPR (D-proline). 
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six scoring functions values for the accepted sequences during the 200 mutation attempts is shown in 
Figure 3. 

We found that from the six scoring functions, only NNscore [22] finished the design run with 
sequences having more positive scores with respect to the original molecules. This is expected given 
the stochastic nature of the sequence space search, where the scores can also increase in energy to 
overcome local barriers. Also, by setting a higher threshold, the number of accepted sequences was 
lower in both cases, with a total of six peptides for each system. Despite the numbers, there are higher 
probabilities to obtain candidates with better average scores than the reference. 

The NNAAs that are part of the prioritized molecules are: DGN (D-glutamine), DME (D-
methionine), ALO (allo-threonine), BB8 (phenylserine), C2N (3-chloro-l-alanine), PF5 (pentafluoro-
phenylalanine), HOX (4-amino-L-phenylalanine), MEG ((3s)-3-methyl-l-glutamic acid), DLY (D-
lysine), DAL (D-alanine), ALC (3-cyclohexyl-alanine), WFP (3,5-Difluoro-phenylalanine), 2FM (s-
(difluoromethyl)-homocysteine), ABA (2-Aminobutyric acid), PHI (4-iodo-phenylalanine) and TYI 
(3,5-diiodotyrosine). 

Finally, to show the connection between our design protocol and the possibility to implement MD 
simulations to re-rank the candidates, all the peptides were subjected to 100 ns MD with the modified 
CHARMM27 force field available at the SwissSideChain database. The trajectories were scored using 
the same six scoring functions of the design, and an average ranking was calculated to prioritize the 
candidates. As a perspective, the user has the possibility to re-rank the molecules using more 
exhaustive sampling methodologies before moving to experimental validations. 

Fig. 2. Evolution of the Rosetta scoring function after 400 mutation attempts using a Metropolis 
criterion for Mpro (A) and cathepsin S (C). The dots in the curve represent the mutations that were 
accepted. A structural representation of the accepted modified peptides is shown for Mpro (B) and 
cathepsin S (D). 
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Fig. 3. Evolution of some of the scoring functions using a consensus criterion. We used a total of 
six scoring functions to calculate the consensus with a threshold of four after attempting 200 
mutations. The dots in the curve represent the mutations that were accepted. The shown scoring 
functions are (A) BPSScore, (B) RosettaDock, (C) Vina and (D) NNscore. 
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