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Introduction 
Myostatin is a protein belonging to 
transforming growth factor β (TGF-β) 
superfamily. Since myostatin 
negatively regulates the growth of 
skeletal muscle, the inactivation of 
myostatin activity causes an increase in 
muscle mass. Hence, the inactivation is 
expected as a promising therapeutic 
strategy for muscular atrophic diseases 
such as muscular dystrophy, cancer 
cachexia and disused muscular atrophy. 
Previously, we discovered a 23-
residues myostatin-binding peptide 1 
(Figure 2) from N-terminal sequence of 
a prodomain protein which forms 
interactions with myostatin in a latent 
myostatin complex [1]. This peptide 
reversibly binds with myostatin and 
inhibited its activity. To drastically 
improve the inhibitory effect, we 
developed peptide-photocatalyst 
conjugates which inactivate myostatin 
via photooxygenation irreversibly and 
catalytically (Figure 1). 
Results and Discussion 
We synthesized conjugate 2 with an 
on/off switchable photooxygenation 
catalyst [2] at the position 12 (Figure 
2) [3]. The amino acid residue at the
position 12 has been reported to show
a high tolerance against structural
modifications in our previous
structure-activity relationship studies
[4]. Since Trp is sensitive to oxidation,
Trp1 of 1 was also replaced with 3,3-
diphenyl propionic acid which was
used as a surrogate for Trp1 in our
previous study [5]. Myostatin was
oxygenated with conjugate 2 under
near-infrared light irradiation 
conditions (wavelength: 730 nm). This

Fig. 2. Structures of myostatin-binding peptide 1 and 
peptide-photocatalyst conjugates 2-6. 

Fig. 1. Inhibition of myostatin using a conjugate of 
myostatin-binding peptide and photooxygenation catalyst.  
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wavelength enables a high light transmission in a living tissue. No oxygenation occurred in the absence 
of 2 or light irradiation. Moreover, the oxygenation was significantly suppressed under degassing 
conditions. These results indicated that conjugate 2 induced the photooxygenation of myostatin. Then, 
to evaluate the inactivation of myostatin by 2, the myostatin activity was measured by a luciferase 
reporter assay. As a result, the oxygenated myostatin was significantly less active than native 
myostatin. No inactivation of myostatin was observed in the absence of 2 or light irradiation. 
Therefore, myostatin was effectively inactivated by photooxygenation with 2.  

Next, we optimized the position of photooxygenation catalyst on the myostatin-binding peptide. 
Based on our previous Ala scan study of peptide 1 [6], Ser8 and Gln16 were selected as modification 
sites. Trp1 and the C-terminus were also selected since they are termini of the peptide chain. 
Conjugates 3-6 with the photooxygenation catalyst at each position were synthesized (Figure 1) [7]. 
Comparing the myostatin photooxygenation by conjugates 2-6, all conjugates exhibited the similar 
photooxygenation activities. Then, to compare the myostatin selectivity, we examined the 
photooxygenation of off-target models such as amyloid-β and substance P. As a result, 2-6 induced 
much less photooxygenation of off-targets than methylene blue which is a nonspecific photosensitizer, 
while especially 2, 4 and 5 exhibited a better selectivity than 3 and 6. Probably because 2, 4 and 5 have 
the photooxygenation catalyst in the middle part of the peptide chain, the peptide chain may prevent 
the catalyst part from approaching off-target molecules. Comparing the myostatin-inhibitory activities 
of 2-6, particularly 5 with the photooxygenation catalyst at the position 16 showed the strongest 
myostatin inhibitory activity among all conjugates. The inhibitory activity of 5 (IC50 2.1 nM) was twice 
higher than that of 2 (IC50 4.0 nM). In addition, 5 inhibited myostatin more than 1500-fold efficiently 
compared to original peptide 1 (IC50 3500 nM), suggesting that irreversible and catalytic inactivation 
of myostatin by photooxygenation is highly effective. Finally, we evaluated the cytotoxicity of the 
conjugate by a WST-1 assay using HEK293 cells. Conjugate 5 showed no significant cytotoxicity 
under both non-irradiated and irradiated conditions despite its high concentration of 3 µM, suggesting 
that 5 has no cytotoxicity and phototoxicity. This could be attributed to the high target selectivity of 5. 

In conclusion, we developed the new conjugates of myostatin-binding peptide and 
photooxygenation catalyst and optimized the catalyst-attachment position. The conjugates selectively 
oxygenated myostatin with near-infrared light irradiation, resulting in its efficient inactivation. These 
findings would contribute to a new photooxygenation-based myostatin-targeting therapy. The protein 
inactivation based on target-selective photooxygenation would open new therapeutic modalities for 
diseases. 
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